

राष्ट्रीय प्रौद्योगिकी संस्थान राउरकेला National Institute of Technology Rourkela

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY AND WORKSHOP ON STRUCTURAL PHASE TRANSITIONS

30 August - 4 September 2017

ROURKELA INTERNATIONAL CRYSTALLOGRAPHY SCHOOL

BILBAO CRYSTALLOGRAPHIC SERVER PRACTICAL EXERCISES I

CRYSTAL-STRUCTURE TOOLS

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

http://www.cryst.ehu.es

bilbao crystallographic server

How to cite the server News: New programs: Get irreps and Space-group symmetry Get mirreps 08/2016: Irreps and order parameters in Assignment of Wyckoff Positions

Transform structures

ternative Settings for a Niverent Decider of the structure of the stru a space Structure Utilities magneti respectiv CELLTRAN New pr PG and STRAIN 08/2016: the crysta WPASSIGN the Space TRANSTRU New pr SETSTRU 07/2016: transform Equivalent Descriptions for a given Crystal Structure **EQUIVSTRU** magnetic settings. VISUALIZE tures using Jmol New ve COMPSTRU Similar Structures with the same Symmetry k SUB(07/2016 Finds the transformation matrix that relates the two given group-subgroup related structures within a tolerance. STRUCTURE RELATIONS k SUBG magneti given conditions. Structure Databases Raman and Hyper-Raman scattering **Tutorials** Material used in workshops and schools Point-group symmetry Archive Plane-group symmetry

CRYSTAL-STRUCTURE DESCRIPTIONS

Conventional and ITA settings of space groups

Non-conventional settings of space groups

Equivalent structure descriptions

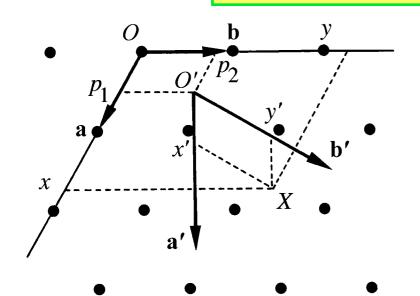
Crystal Structure Descriptions

Inorganic Crystal Structure Database

Bilbao Crystallographic Server

```
Pattern
                                        Details
                                                  Bonds
                                                                    Structure
CC=45520
                                                                              [ Jmol
Title
            Redetermination of the oxygen parameters in zircon (Zr Si O4).
Authors
            Krstanovic, I.R.
            Acta Crystallographica (1958) 11, 896-897
Reference
            Link XRef SCOPUS SCIRUS Google
Compound | Zr (Si O4) - [Zircon] Zirconium silicate [ABX4] [tI24] [h b a] [ZrSiO4]
            6.6164(5), 6.6164, 6.0150(5), 90., 90., 90.
Cell
            I41/AMDZ (141) V=263.32
            R=0.070000 : PDC =01-073-6646 : PDF =6-266 : TYP =ZrSiO4 : XDS MIN
            =Zircon:
Remarks
            At least one temperature factor missing in the paper.
            hk0- and 0kl-data, crystals not metamict
Atom (site) Oxid.
                                      x, y, z, B, Occupancy
                                      0 0.75
Zr1
                                                            0.125
           (4a)
Si1
           (4b)
                                      0 0.75
                                                            0.625
                                      0 0.067(3)
01
           (16h)
                                                            0.198(3)
                                                                              0 1
```

```
# Space Group ITA number
141


# Lattice parameters
6.6164 6.6164 6.0150 90 90 90

# Number of independent atoms in the asymmetric unit
3

# [atom type] [number] [WP] [x] [y] [z]

Zr I 4a 0 0.75 0.125
Si I 4b 0 0.75 0.625
O I 16h 0 0.067 0.198
```

Problem: BASIS TRANSFORMATION

$$(\mathbf{a}, \mathbf{b}, \mathbf{c})$$
, origin O: point $X(x, y, z)$

 $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$, origin O': point X(x', y', z')

(i) linear part: change of orientation or length

$$(\mathbf{a}',\mathbf{b}',\mathbf{c}')=(\mathbf{a},\mathbf{b},\mathbf{c})P$$

$$= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}).$$

(ii) origin shift by a shift vector $\mathbf{p}(p_1,p_2,p_3)$:

$$O' = O + p$$

the origin O' has coordinates (p_1,p_2,p_3) in the old coordinate system

Transformation of the coordinates of a point X(x,y,z):

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = Q \begin{pmatrix} x \\ y \\ z \end{pmatrix} + q$$
 with $Q = P^{-1}$

$$q = -P^{-1}p.$$

$$= \begin{pmatrix} Q_{11}x + Q_{12}y + Q_{13}z + q_1 \\ Q_{21}x + Q_{22}y + Q_{23}z + q_2 \\ Q_{31}x + Q_{32}y + Q_{33}z + q_3 \end{pmatrix}.$$

Transformation of symmetry operations (W,w):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Transformation of the metric tensor G:

$$G'=P^{T}(G)P$$

Problem: ITA SETTINGS STRUCTURE

DESCRIPTIONS

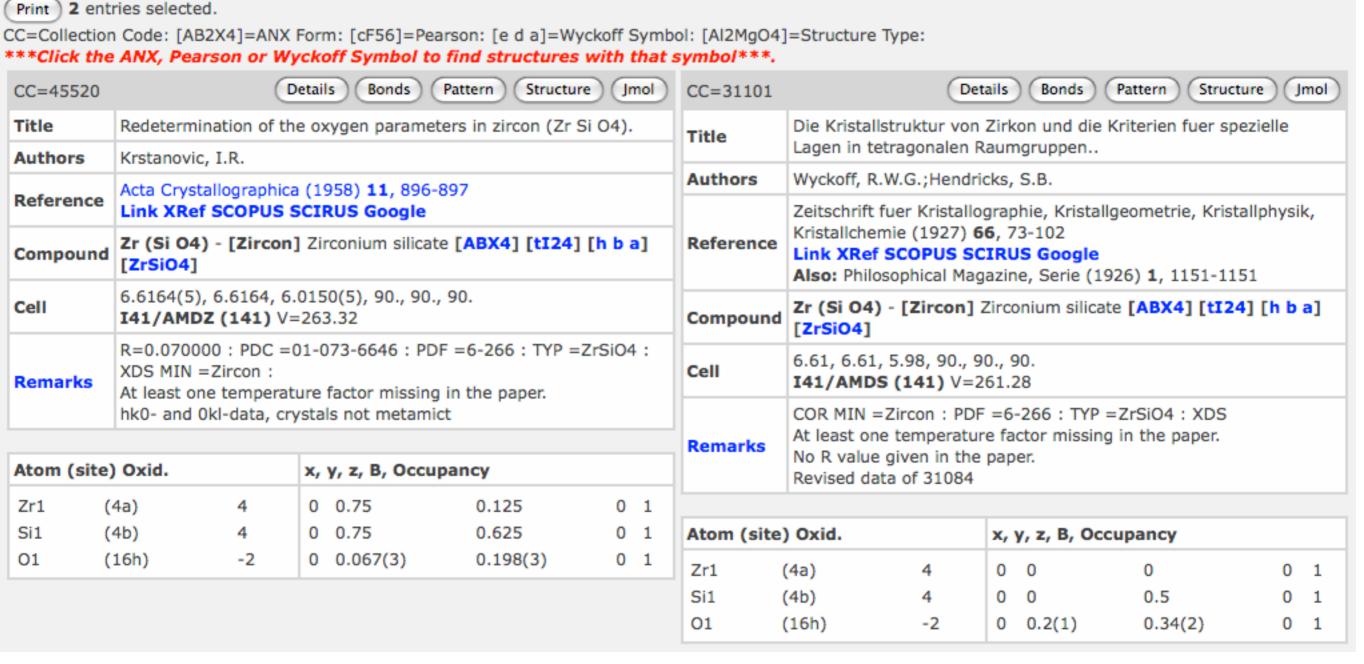
SETSTRU

ITA-settings for the space group C2/c (No.15)

Choose the initial and final space groups symbols

in matrices must be read by columns. P is the transformation from standard to non-

initial setting structure description


$$X_f = (P,p)^{-1}X_i$$

final setting structure description

Initial	Final	Setting	P	P-1
0	0	C 1 2/c 1	a,b,c	a,b,c
0	0	A 1 2/n 1	-a-c,b,a	c,b,-a-c
0	0	/ 1 2/a 1	c,b,-a-c	-a-c,b,a
0	0	A 1 2/a 1	c,-b,a	c,-b,a
C	0	C 1 2/n 1	а,-ь,-а-с	a,-b,a-c
C	0	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
C	0	A 1 1 2/a	c,a,b	b,c,a
C	0	B 1 1 2/n	a,-a-c,b	a,c,-a-b
C	0	/ 1 1 2/b	-a-c,c,b	-a-b,c,b
C	0	B 1 1 2/b	a,c,-b	a,-c,b
0	0	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
0	0	/ 1 1 2/a	c,-a-c,-b	-a-b,-c,a
0	0	B 2/b 1 1	b,c,a	c,a,b
		0.01-4.4		la a la a

Problem 3.1

Compare the two structure descriptions and check if they belong to the same structure type.

origin choice 2

origin choice I

EXERCISES

Problem 3.1

Structure I: Space group $I4_I/amd$ (I4I) $a=6.60~\mathring{A}$ c=5.88 \mathring{A} origin choice I at $\overline{4}m2$

Structure 2: Space group $I4_{\rm I}/amd$ (141) $a=6.616\,\mathring{A}$ c=6.015 \mathring{A} origin choice 2 at 2/m at 0,-1/4,1/8 from $\overline{4}m2$

Compare the two structure descriptions and check if they belong to the same structure type.

Use the tools of Bilbao Crystallographic server: SETSTRU

Hint: In order to compare the different data, the parameters of Structure 1 are to be transformed to 'origin at center 2/m', i. e. ORIGIN CHOICE 2.

Problem 3.1

SOLUTION

Structure tools: SETSTRU

Origin 2 description x' = x - p

(i)
$$Zr: (a) 0, \frac{1}{4}, \frac{1}{8} \sim \frac{7}{8}; 0, \frac{3}{4}, \frac{1}{8}; \frac{1}{2}, \frac{1}{4}, \frac{5}{8}; \frac{1}{2}, \frac{3}{4}, \frac{3}{8};$$

(ii)
$$Si: (b) \ 0, \frac{1}{4}, \frac{3}{8}; \ 0, \frac{3}{4}, \frac{5}{8}; \ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}; \ \frac{1}{2}, \frac{3}{4}, \frac{1}{8} \sim \frac{7}{8};$$

(iii)
$$O: (h) 0, 0.20 + 0.25, 0.34 - 0.125 = 0, 0.45, 0.215$$

the rest of oxygen atoms

```
0, 0.05, 0.215 0.20, 0.25, 0.535 0.80, 0.25, 0.535 0, 0.95, 0.785 0, 0.55, 0.785 0.80, 0.75, 0.465 0.20, 0.75, 0.465, all also with (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) + .
```

0, 0.067, 0.198

Problem: UNIT CELL CELLTRAN
TRANSFORMATION

lattice parameters hexagonal cell

 $G'=P^{T}GP$

Transform Unit Cell

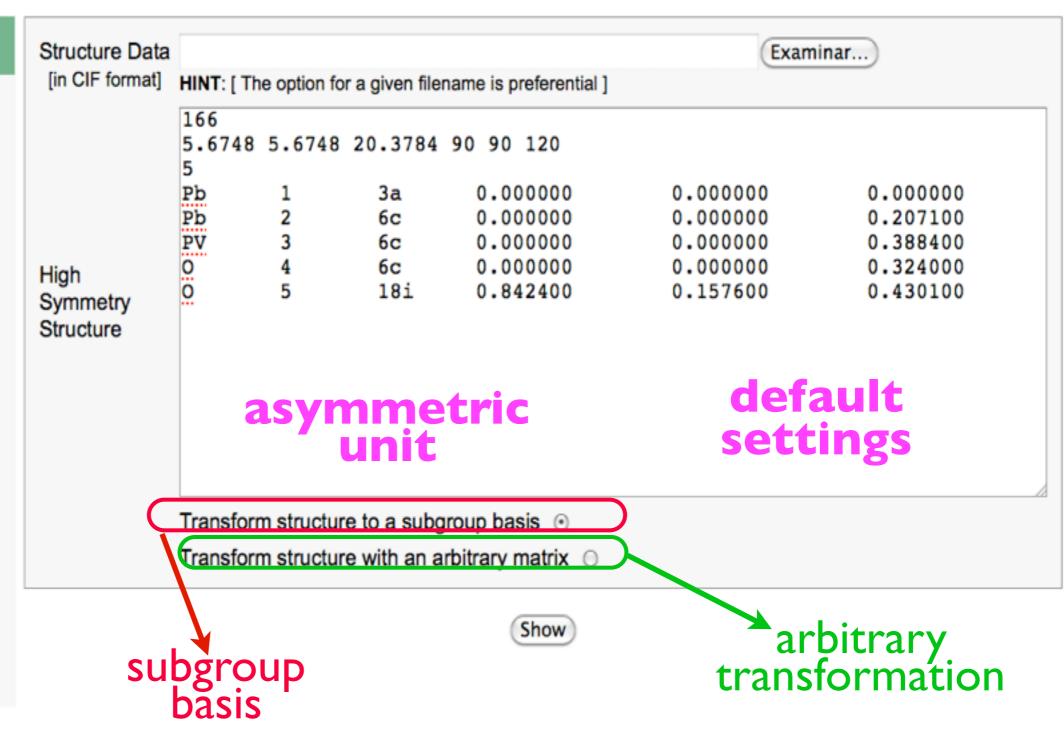
Cell Parameters:	5.6748 5.6748 20.3784 90 9	0 120			Centering R 🕏
Please, define the rotation	ne subgroup bases				
in abc form:					Ex: c,a,b (read by columns)
			Rotationa	al part	
		2/3	0	-2	
or in matrix form:		1/3	1	-1	
		1/3	0	0	
			1		
			т.,	C -	

(P,p)

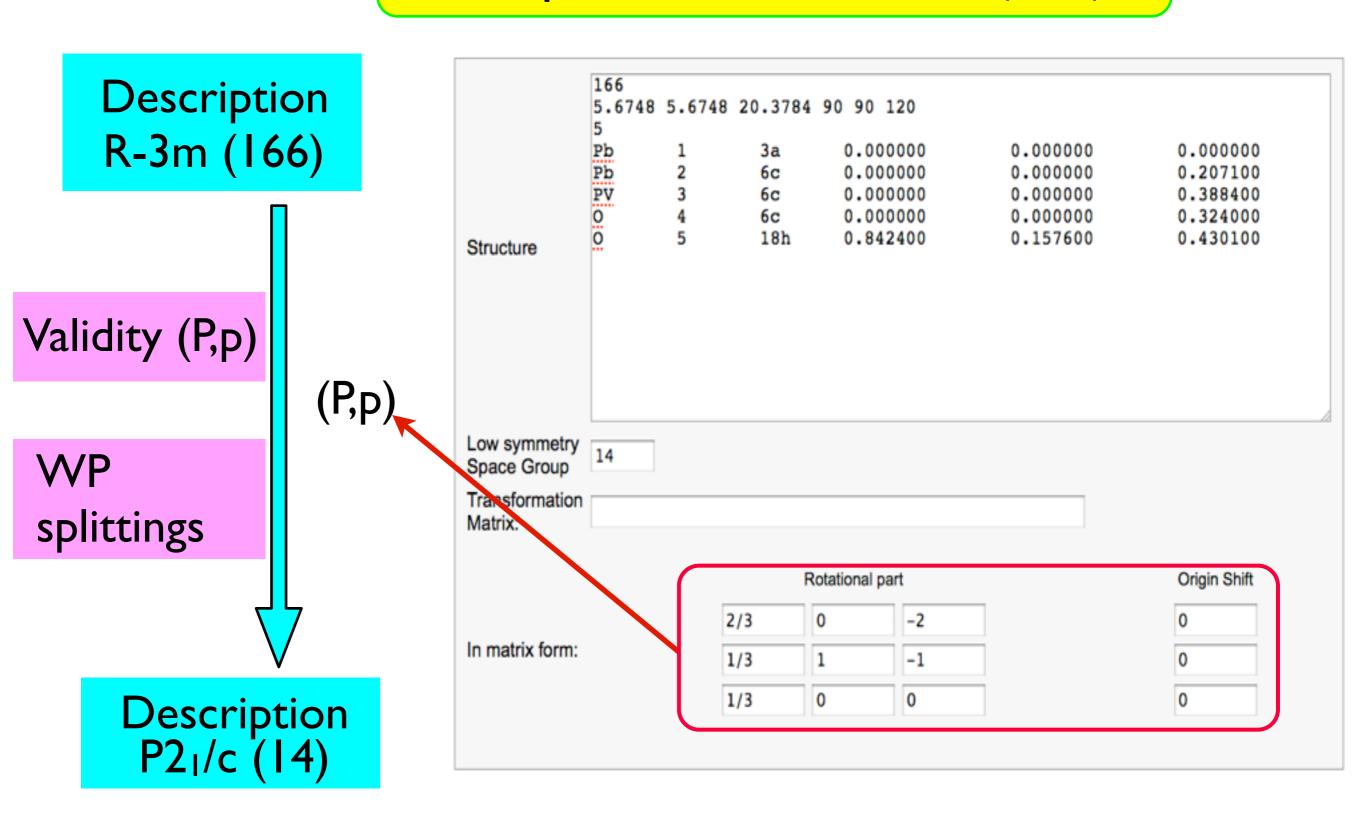
matrix

lattice parameters monoclinic cell

Problem: STRUCTURE TRANSFORMATION


TRANSTRU

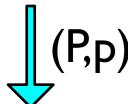
Transform Structure


TRANSTRU can transform a structure in two ways:

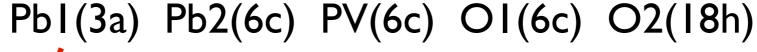
- To a lower symmetry space group. The transformed structure is given in the low symmetry space group basis, taking care of all possible splittings of the Wyckoff positions.
- With an arbitrary matrix.
 The structure, including the cell parameters and the atoms in the unit cell, is transformed with an arbitrary matrix introduced by the user.

Only the default choice for the conventional setting of the space groups is used.

Example TRANSTRU: Pb₃(VO₄)₂

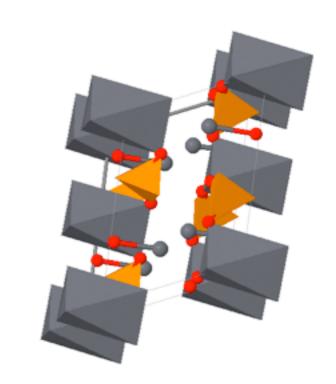


High symmetry structure


```
166
5.6748 5.6748 20.3784 90 90 120
5
Pb 1 3a 0.000000 0.000000 0.000000
Pb 2 6c 0.000000 0.000000 0.207100
PV 3 6c 0.000000 0.000000 0.388400
O 4 6c 0.000000 0.000000 0.324000
O 5 18h 0.842400 0.157600 0.430100
```


Example TRANSTRU: Pb3(VO4)2

P2₁/c structure



Pb1(2a) Pb2(4e) PV(4e) O1(4e) O21(4e) O22(4e)

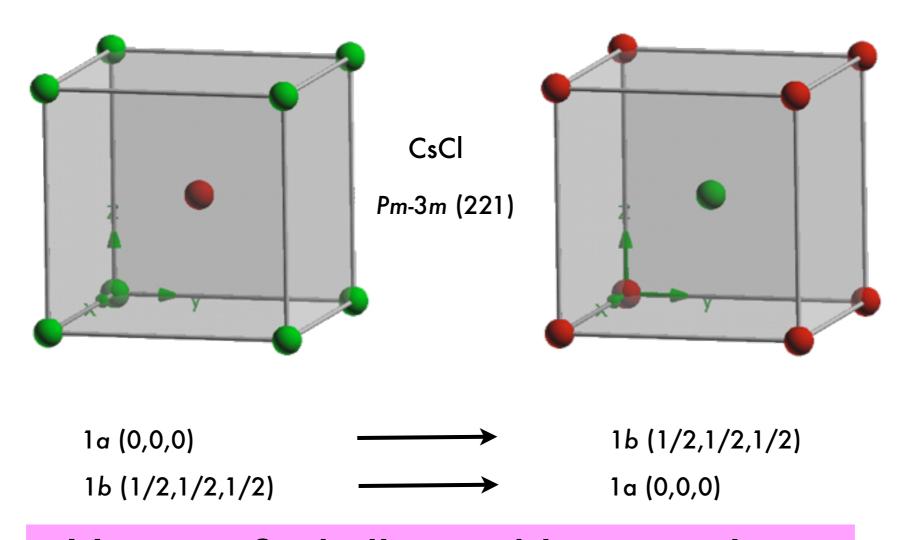
Low symmetry structure

014					
7.541657	7 5.67480	0 9.8290	041 90.000000 11	5.749245 90.00000	00
7					
Pb	1	2a	0.000000	0.000000	0.000000
Pb	2	4e	0.621300	0.000000	0.207100
PV	3	4e	0.165200	0.000000	0.388400
0	4	4e	0.972000	0.000000	0.324000
0	5	4e	0.290300	0.736400	0.008900
0	5_2	4e	0.290300	0.500000	0.772500
0	5_3	4e	0.709700	0.763600	0.491100

View Structure (with Jmol applet)

EXERCISES

Problem 3.1 (cont.)


Apply the program TRANSTRU in order to check if the two structure descriptions belong to the same structure type.

- Structure I: Space group I4_I/amd (141) a=6.60 \mathring{A} c=5.88 \mathring{A} origin choice I at $\overline{4}m2$
- Structure 2: Space group I4_I/amd (141) a=6.616 \mathring{A} c=6.015 \mathring{A} origin choice 2 at 2/m at 0,-1/4,1/8 from $\overline{4}m2$

Coordinate transformation

Origin choice 2 \longrightarrow Origin choice I p=0,1/4,-1/8

Problem: EQUIVALENT EQUIVSTRU DESCRIPTIONS

How to find all possible equivalent descriptions of a crystal structure?

Number of equivalent descriptions= |N(G)|/|G| index of the group in its Euclidean normalizer

Problem 3.2a

Bilbao Crystallographic Server

Equivalent descriptions: CsCl EQUIVSTRU

Equivalent Descriptions of Crystal Structures

Equivalent Structures

Given a space group ITA number, the cell parameters (separated with spaces) and the atom positions, the program EQUIVSTRU transforms the corresponding structure with the elements of the euclidean normalizer of the space group. All the transformed structures are equivalent symmetry descriptions of the given initial structure. The atom positions are identified generating the Wyckoff sets.

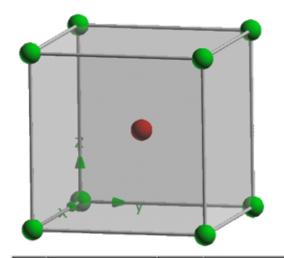
Only the default choice for the conventional setting of the space groups is used.

```
Structure Data
                                                                 Examinar...
[in CIF format]
            HINT: [ The option for a given filename is preferential ]
            # Space Group ITA number
            221
            # Lattice parameters
            5.3 5.3 5.3 90 90 90
            # Number of independent atoms in the asymmetric unit
              [atom type] [number] [WP] [x] [y] [z]
                   1a 0
            Cs 1
            Cl 1 1b 0.5 0.5 0.5
Structure
                             space group in
                              default setting
```

Example EQUIVSTRU: CsCI

Equivalent Descriptions of Crystal Structures

Equivalent Structures


Given a space group ITA number, the cell parameters (separated with spaces) and the atom positions, the program EQUIVSTRU transforms the corresponding structure with the elements of the euclidean normalizer of the space group. All the transformed structures are equivalent symmetry descriptions of the given initial structure. The atom positions are identified generating the Wyckoff sets.

Structure Data [in CIF format]

Structure

HINT: [The option for a given filename is preferential]

#Exercise 3.2a(CsCl)
Space Group ITA number
221
Lattice parameters
4.12599 4.12599 4.12599 90.0 90.0 90.0
Number of independent atoms in the asymmetric unit
2
[atom type] [number] [WP] [x] [y] [z]
Cl 1 1a 0.0000000 0.0000000
Cs 1 1b 0.5000000 0.5000000

Structure number 1

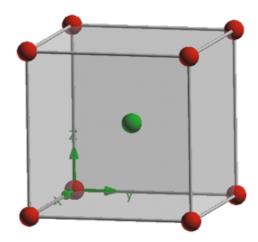
Normalizer coset representative: x,y,z

Transformed unit cell:

4.1260 4.1260 4.1260 90.00 90.00 90.00

Transformed structure:

AT.	WP	SS	Representative	Atomic orbit
CI1	1a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000)
Cs1	1b (1/2,1/2,1/2)	m-3m	(0.500000,0.500000,0.500000)	(0.500000,0.500000,0.500000)


Structure number 2

Normalizer coset representative: x+1/2,y+1/2,z+1/2

Transformed unit cell:

4.1260 4.1260 4.1260 90.00 90.00 90.00

Transformed structure:

Examinar.

AT.	WP SS		WP SS Representative		Representative	Atomic orbit	
CI1	1b (1/2,1/2,1/2)	m-3m	(0.500000,0.500000,0.500000)	(0.500000,0.500000,0.500000)			
Cs1	1a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000)			

EXERCISES

Problem 3.2b

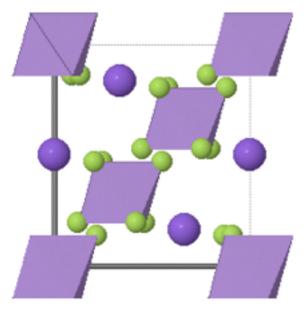
Equivalent structure descriptions

Space group: P4/n

Exercise 6.4. $P(C_6C_5)_4[MoNCl_4]$ is tetragonal, spac

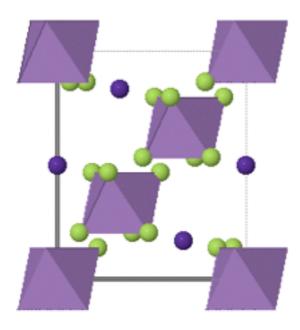
Atom	Wyckoff	Coordinate	triplets	
	position	\boldsymbol{x}	y	z
P	2b	0.25	0.75	0
Mo	2c	0.25	0.25	0.121
\mathbf{N}	2c	0.25	0.25	-0.093
C1	8g	0.362	0.760	0.141
C2	8g	0.437	0.836	0.117
Cl	8g	0.400	0.347	0.191

N(P4/n) = P4/mmm (a',b',1/2c)

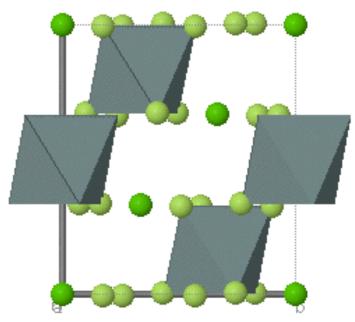

$$a'=1/2(a-b), b'=1/2(a+b)$$

EXERCISES

Problem 3.3


EQUIVSTRU

KAsF₆


148 7.3480 7.3480 7.2740 90.00 90.00 120.00 3 K 1 3b 0.333333 0.666666 0.166666 As 1 3a 0 0 0 F 1 18f 0.1292 0.2165 0.1381

BalrF₆


```
148
7.3965 7.3965 7.2826 90.00 90.00 120.00
3
Ba 1 3b 0.333333 0.666666 0.166666
Ir 1 3a 0 0 0
F 1 18f 0.0729 0.2325 0.1640
```

BaSnF₆


```
148
7.4279 7.4279 7.4180 90.00 90.00 120.00
3
Sn 1 3b 0 0 0.5
Ba 1 3a 0 0 0
F 1 18f 0.2586 0.8262 0.0047
```

Space-group symmetry: R-3

Euclidean normalizer: R-3m(-a,-b, 1/2c)

Coset representatives: x,y,z; x,y,z+1/2; -y,-x,z; -y,-x,z+1/2;

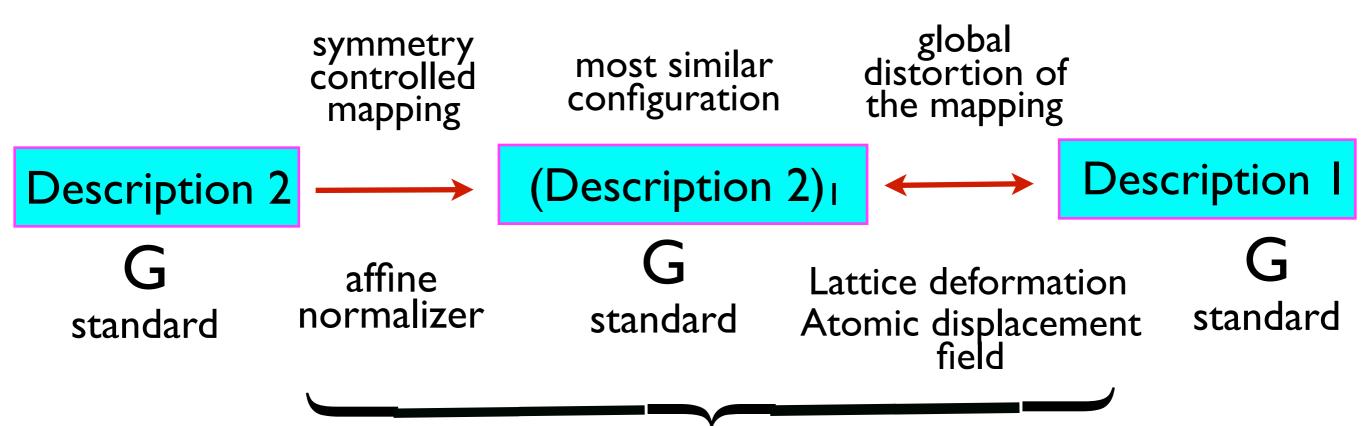
CRYSTAL-STRUCTURE RELATIONSHIPS

Comparison of crystal structures

Phase transitions

Symmetry relations between crystal structures

Crystal-structure relationships


COMPARISON OF CRYSTAL STRUCTURES

Different descriptions of the same structure

PROBLEM:

Two descriptions of the same structure with respect to the same space group, specified by unit-cell parameters and atomic coordinates data.

Search for a mapping of the two descriptions such that the global distortion accompanying the mapping is tolerably small.

COMPSTRU

Problem: Similarity of the descriptions

Description I

a₁,b₁,c₁

(x₁,y₁,z₁)

How to measure the **similarity** between two descriptions?

Description 2 a_2,b_2,c_2 (x_2,y_2,z_2)

degree of lattice distortion

$$S = \frac{1}{3} \sqrt{\sum_{i} \eta_{i}^{2}}$$

 η_i -eigenvalues of the Lagrangian strain tensor

average atomic displacements

$$d_{av} = \frac{1}{n} \sum_{i} m_i u_i$$

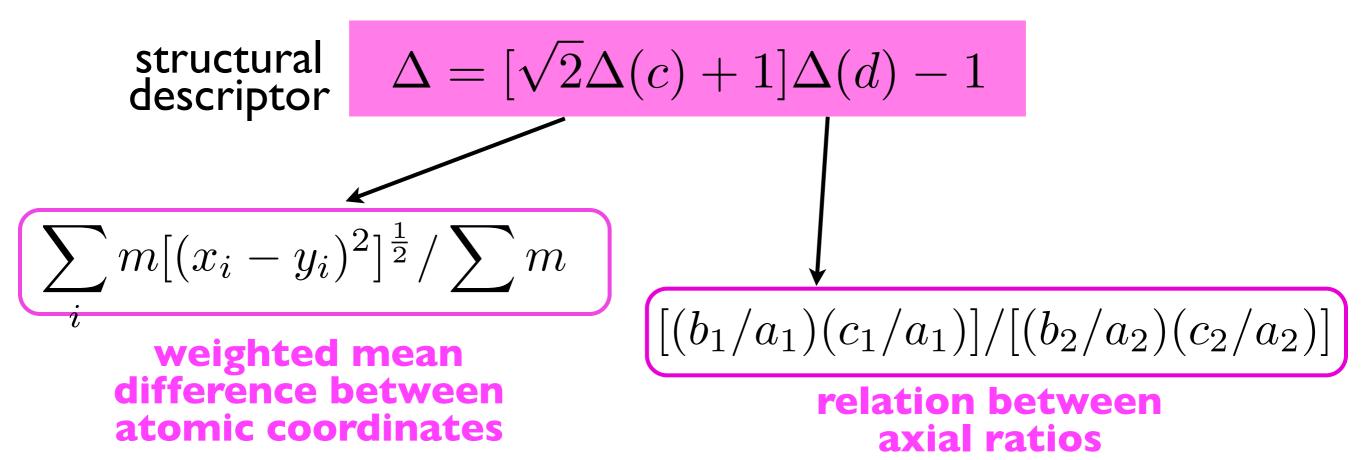
 u_i -atomic displacements

maximal atomic displacements

maximal displacements of the paired atoms

Problem: Similarity of the descriptions

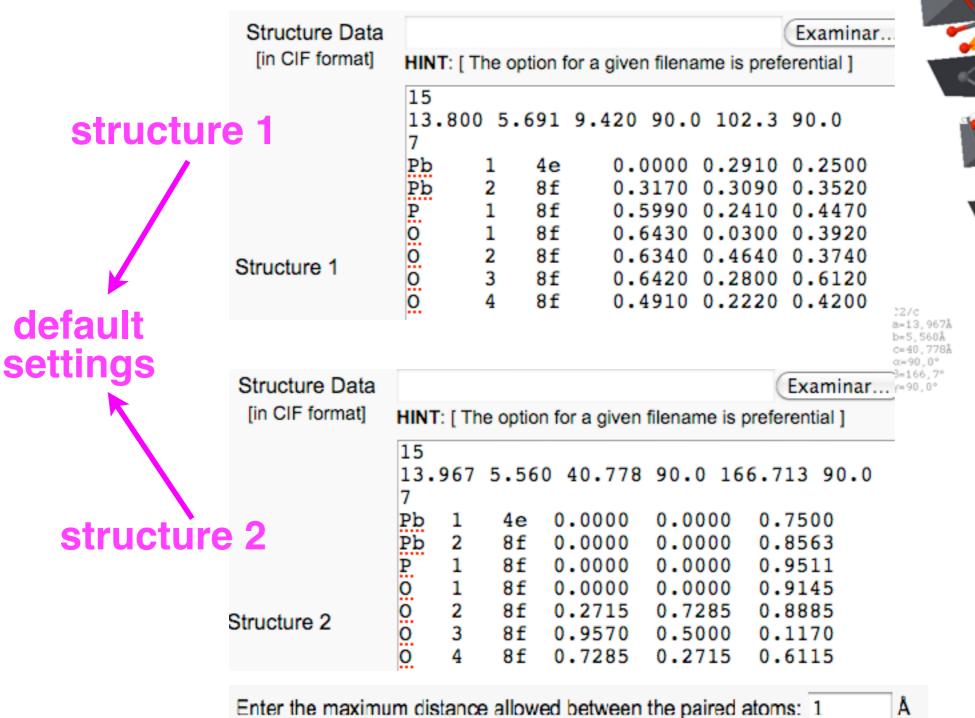
Description I


a₁,b₁,c₁

(x₁,y₁,z₁)

How to measure the **similarity** between two descriptions?

Description 2 a_2,b_2,c_2 (x_2,y_2,z_2)


Bergerhoff et al. Acta Cryst.(1999), B55, 147

Problem: COMPARISON OF STRUCTURES

COMPSTRU

Comparison of crystal structures of the same symmetry

7.cryst.ehu.es

tolerances

Enter the allowed tolerance (a b c α β γ): .5 .5 .5 5 5

Example COMPSTRU: Pb₃(PO₄)₂

Structure #1

15					
13.	800 5	.691	9.420 90.0	102.3	90.0
7					
Pb	1	4e	0.0000	0.2910	0.2500
	2	8f	0.3170	0.3090	0.3520
P	1	8f	0.5990	0.2410	0.4470
Ö	1	8f	0.6430	0.0300	0.3920
Ö	2	8f	0.6340	0.4640	0.3740
Ö	3	8f	0.6420	0.2800	0.6120
Pb P: 0: 0: 0: 0:	4	8f	0.4910	0.2220	0.4200

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0116	0.3386	0.1430	0.066

structural descriptor

$$\Delta = 0.066$$

Atom pairings and distances

WP		Atom	Atomic Displacements				
		Atom	u _X	uy	uz	u	
4e	(0,y,1/4)	Pb1	0.0000	-0.0410	0.0000	0.2333	
8f	(x,y,z)	Pb2	0.0019	-0.0590	0.0043	0.3386	
8f	(x,y,z)	P1	0.0043	0.0090	0.0041	0.0816	
8f	(x,y,z)	01	0.0010	-0.0085	-0.0035	0.0617	
8f	(x,y,z)	02	0.0100	0.0145	0.0145	0.1910	
8f	(x,y,z)	О3	0.0020	-0.0300	0.0050	0.1777	
8f	(x,y,z)	04	0.0025	0.0280	-0.0055	0.1733	

maximal displacement

Structure #2

15	067		40 ==0	00 0 16		
13.	967	5.560	40.778	90.0 16	6.713	90.0
7						
Pb	1	4e	0.0000	0.0000	0.750	00
Pb	2	8f	0.0000	0.0000	0.856	53
P	1	8f	0.0000	0.0000	0.951	.1
0	1	8f	0.0000	0.0000	0.914	15
0	2	8f	0.2715	0.7285	0.888	35
0	3	8f	0.9570	0.5000	0.117	70
0	4	8f	0.7285	0.2715	0.611	.5

affine normalizer

Most similar configuration to Structure #1

015 13.9 7	67000	5.560000	9.630055	90.000000	103.295059	90.000000
Pb	1	4e	0.00	00000	0.250000	0.250000
Pb	2	8f	0.3	18900	0.250000	0.356300
P	1	8f	0.60	03300	0.250000	0.451100
0	1	8f	0.49	93500	0.250000	0.414500
0	2	8f	0.6	44000	0.478500	0.388500
0	3	8f	0.6	44000	0.250000	0.617000
0	4	8f	0.6	44000	0.021500	0.388500

Problem: COMPARISON OF STRUCTURE DESCRIPTIONS

COMPSTRU

Problem 3.4

In ICSD can be found several structure data sets of ε -Fe₂O₃, all of them of symmetry Pna2₁(No.33). Compare the following two descriptions and check if they belong to the same structure type.

Problem 3.4

ICSD data for ε-Fe₂O₃,

ICSD for WWW

Details of the selected entries

(Print) 2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type:

Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol.

CC=173024	Details Bonds Pattern Structure Jmol	(
Title	High- and low-temperature crystal and magnetic structure of epsilon-Fe2 O3 and their correlation to its magnetic properties.	7
Authors	Gich, M.; Frontera, C.; Roig, A.; Taboada, E.; Molins, E.; Rechenberg, H.R.; Ardisson, J.D.; Macedo, W.A.A.; Ritter, C.; Hardy, V.; Sort, J.; Skumryev, V.; Nogues, J.	F
Reference	Chemistry of Materials (2007) 18, 3889-3897 Link XRef SCOPUS SCIRUS Google	(
Compound	Fe2 O3 - Iron(III) oxide - epsilon [A2X3] [oP40] [a10] [AlFeO3]	(
Cell	5.0885(5), 8.7802(14), 9.4709(13), 90., 90., 90. PNA21 (33) V=423.14	F
Remarks	R=0.013300 : NDP RVP SNP TEM =200 : TYP =AlFeO3 : XDP MAG At least one temperature factor missing in the paper.	ı

Atom	(site) Oxid	l.	x, y, z, B, Occ	upancy			
01	(4a)	-2	0.978(2)	0.3282(15)	0.4314(11)	0	1
02	(4a)	-2	0.515(2)	0.4907(17)	0.4187(16)	0	1
03	(4a)	-2	0.650(3)	0.9979(13)	0.1883(9)	0	1
04	(4a)	-2	0.160(3)	0.1637(15)	0.1956(7)	0	1
05	(4a)	-2	0.841(3)	0.1680(15)	0.6669(7)	0	1
06	(4a)	-2	0.527(2)	0.1637(19)	0.9362(9)	0	1
Fe1	(4a)	3	0.1928(11)	0.1506(6)	0.5807(3)	0	1
Fe2	(4a)	3	0.6826(6)	0.0291(3)	0.7897(5)	0	1
Fe3	(4a)	3	0.1858(10)	0.1519(6)	0	0	1
Fe4	(4a)	3	0.8104(7)	0.1580(4)	0.3071(3)	0	1

	CC=415250	Details Bonds Pattern Structure In
	Title	Synthesis and structural analysis of epsilon-(Fe2 O3).
4	Authors	Kelm, K.; Mader, W.
	Reference	Zeitschrift fuer Anorganische und Allgemeine Chemie (2005) 631 , 2383-2389 Link XRef SCOPUS SCIRUS Google
	Compound	Fe2 03 - Diiron(III) oxide - epsilon [A2X3] [oP40] [a10] [AlFeO3]
1	Cell	5.0715(2), 8.7359(4), 9.4178(4), 90, 90, 90 PNA21 (33) V=417.24
	Remarks	R=0.039000 : TYP =AIFeO3 : XDP RVP

Atom	(site) 0	xid.	x, y, z, B, (Occupancy			
Fe1	(4a)	3	0.6768(9)	0.8427(5)	0.0000000	0.050(2)	1.000000
Fe2	(4a)	3	0.204(1)	0.3509(8)	0.7726(9)	0.063(3)	1.000000
Fe3	(4a)	3	0.807(1)	0.6605(8)	0.693(1)	0.069(2)	1.000000
Fe4	(4a)	3	0.6852(9)	0.4634(5)	0.983(2)	0.046(1)	1.000000
01	(4a)	-2	0.337(2)	0.853(2)	0.887(1)	0.0063326	1.000000
02	(4a)	-2	0.019(3)	0.474(2)	0.610(2)	0.0063326	1.000000
03	(4a)	-2	0.453(3)	0.677(2)	0.651(2)	0.0063326	1.000000
04	(4a)	-2	0.527(3)	0.669(2)	0.100(1)	0.0063326	1.000000
05	(4a)	-2	0.868(3)	0.334(2)	0.863(1)	0.0063326	1.000000
06	(4a)	-2	0.336(3)	0.513(1)	0.891(1)	0.0063326	1.000000

Problem: Structure Types Isoconfigurational

COMPSTRU

Lima-de Faria et al. Acta Cryst. (1990), A46, I

Isopointal structure types

Space group

Wyckoff position sequence

Pearson symbol

Isoconfigurational structure types

Isopointal

Crystallographic orbits

Geometrical interrelationships

Allmann, Hinek. *Acta Cryst.*(2007), **A**63, 412

Inorganic Crystal Structure Database (2009) http://icsdweb.fiz-karlsruhe.de

isoconfigurational structure types?

Composition type (ANX formula)

Range of c/a ratio

β-range

Atomic coordinates

Chemical properties

Isoconfigurational (configurational)

Structure Types

PROBLEM:

Consider two isopointal structures specified by their space-group symmetry, unit-cell parameters and atomic coordinates data.

We search for a mapping of the two structures such that the global distortion accompanying the mapping is tolerably small.

global symmetry controlled most similar distortion of configuration the mapping mapping Structure I (Structure 2)₁ Structure 2 atomic species Lattice deformation standard standard standard correspondence Atomic displacement scheme field

COMPSTRU

Problem: Isoconfigurational Structure Types

COMPSTRU

Structure I
a₁,b₁,c₁
(x₁,x₂,x₃)

How to measure the *similarity* between two isopointal structures?

isoconfigurational?

Structure2 a_2,b_2,c_2 (y_1,y_2,y_3)

degree of lattice distortion

$$S = \frac{1}{3} \sqrt{\sum_{i} \eta_{i}^{2}}$$

 η_i -eigenvalues of the Lagrangian strain tensor

average atomic displacements

$$d_{av} = \frac{1}{n} \sum_{i} m_i u_i$$

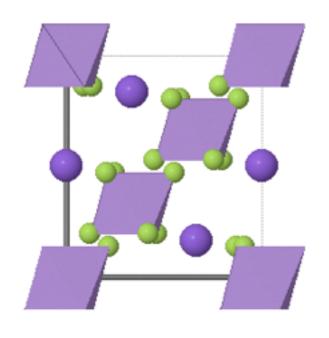
 u_{i} -atomic displacements

structural descriptor

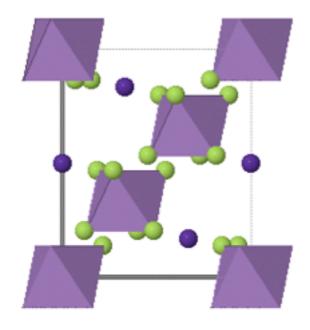
$$\Delta = \left[\sqrt{2}\Delta(c) + 1\right]\Delta(d) - 1$$

Bergerhoff et al. Acta Cryst.(1999), B55, 147

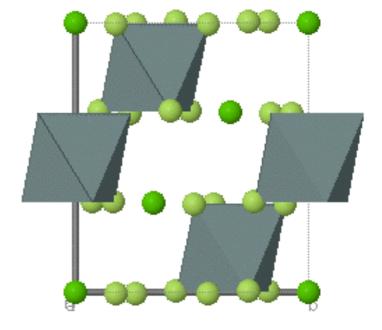
Problem: Isoconfigurational Structure Types


COMPSTRU

EXERCISES


Problem 3.3(cont.)

Do these compounds belong to the same structure type?

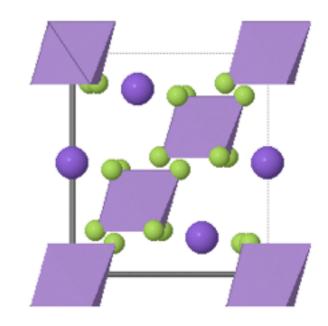

KAsF₆

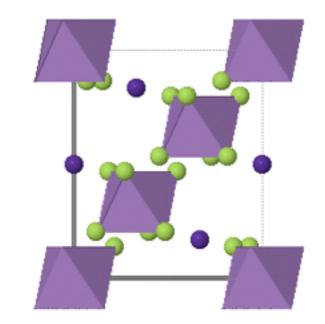
BalrF₆

$BaSnF_6$


```
148
7.3480 7.3480 7.2740 90.00 90.00 120.00
3
K 1 3b 0.333333 0.666666 0.166666
As 1 3a 0 0 0
F 1 18f 0.1292 0.2165 0.1381
```

```
148
7.4279 7.4279 7.4180 90.00 90.00 120.00
3
Sn 1 3b 0 0 0.5
Ba 1 3a 0 0 0
F 1 18f 0.2586 0.8262 0.0047
```


Koch, Fischer. MathCryst Satell., ECM22, Budapest 2004


COMPSTRU

Problem 3.3

SOLUTION

```
#KAsF6
                            148
                            7.3480 7.3480 7.2740 90.00 90.00 120.00
                                            0.333333 0.666666 0.166666
        structure 1
                                      3a
                                            0 0 0
                            As
                                            0.1292 0.2165 0.1381
              Structure 1
default
                             #BaIrF6
                              148
settings
                              7.3965 7.3965 7.2826 90.00 90.00 120.00
                                              0.333333 0.666666
                                        3b
                              Ba
                              0.166666
                                        3a
                                              0 0 0
                              Ir
                                        18f
                                              0.0729 0.2325 0.1640
                Structure 2
             structure 2
```


tolerances

Enter the maximum distance allowed between the paired atoms: 1 Å

Enter the allowed tolerance (a b c α β γ): .5 .5 .5 5 5

Problem 3.3

SOLUTION

COMPSTRU

Comparison of crystal structures of the same symmetry *R*-3 (No. 148)

Structure 1

```
148
7.3480 7.3480 7.2740 90.00 90.00 120.00
3
K 1 3b 0.333333 0.666666 0.166666
As 1 3a 0.000000 0.000000 0.000000
F 1 18f 0.129200 0.216500 0.138100
```

option I

correspondence scheme proposed by the program

Structure #1	Structure #2
F	F
K	Ва
As	Ir

Do you agree with the proposed correspondence scheme?

Yes

No

Structure 2

148							
7.3965	7.3	965 7.	2826	90.0	0 90	0.00	120.00
3							
Ba	1	3b	0.333	333	0.66	66666	0.166666
Ir	1	3a	0.000	000	0.00	00000	0.000000
F	1	18f	0.072	900	0.23	32500	0.164000

option 2

correspondence scheme based on Wyckoff sets

Structure 1

Wyckoff set (ab) K 1 3b 0.333333 0.666666 0.166666 As 1 3a 0.000000 0.000000 0.000000

Wyckoff set (f) F 1 18f 0.129200 0.216500 0.138100

Structure 2

	TTY CHOIL SOL (ab)
В	a 1 3b 0.333333 0.666666 0.166666
Ir	1 3a 0.000000 0.000000 0.000000

Wyckoff set (ah)

Wyckoff set (f) F 1 18f 0.072900 0.232500 0.164000

SOLUTION

COMPSTRU

KAsF₆

Structure 1

```
148
7.3480 7.3480 7.2740 90.00 90.00 120.00
3
K 1 3b 0.333333 0.666666 0.166666
As 1 3a 0.000000 0.000000 0.000000
F 1 18f 0.129200 0.216500 0.138100
```

Evaluation of the structure similarity

S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0031	0.2701	0.2205	0.051

structural descriptor

$$\Delta = 0.051$$

Atom pairings and distances

	WP	Atom Atom		Atomic Displacements						
	Structure1		Structure2	u _X	uy	uz	u			
3b	(0,0,1/2)	K1	Ba1	0.0000	0.0000	0.0000	0.0000			
3a	(0,0,0)	As1	lr1	0.0000	0.0000	0.0000	0.0000			
18f	(x,y,z)	F1	F1	0.0304	0.0160	0.0259	0.2701			

BalrF₆

Structure 2

affine normalizer

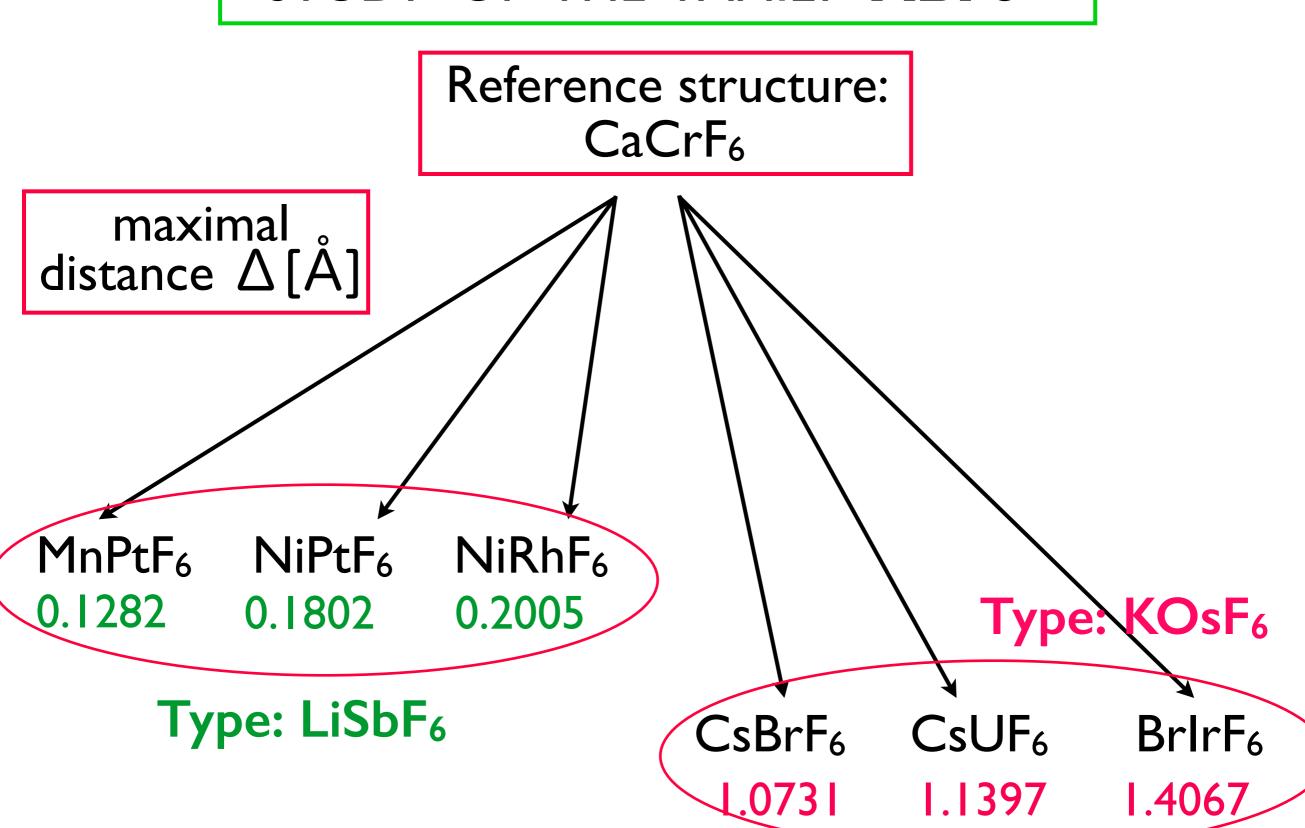
Description of Structure #2 in the most similar configuration to Structure #1

148 7.39 3	96500 7.39	6500 7.28	32600 90.000000	90.000000 120.0	00000
Ва	1	3b	0.333334	0.666667	0.166666
Ir	1	3a	0.000000	0.00000	0.000000
F	1	18f	0.159600	0.232500	0.164000

maximal displacement

$$d_{max}=0.27 \text{ Å}$$

Example: STRUCTURE TYPES COMPSTRU


STUDY OF THE FAMILY ABF6

KCrF6	LiNbF6	VNbF6	HgRhF6	MgPbF6	InAsF6
RbCrF6	LiRuF6	CoZrF6	NiRhF6	ZnPbF6	CsNbF6
KAsF6	LiRhF6	PdPtF6	CaCrF6	NiPbF6	HgCrF6
RuAsF6	LiTaF6	FeNbF6	MgCrF6	MgPdF6	CoSnF6
CsAsF6	LiOsF6	CaSnF6	CdCrF6	CaPdF6	CsNbF6
RbSbF6	LiIrF6	FeZrF6	MnSnF6	ZnPdF6	MnPtF6
BaSnF6	LiPtF6	CuZrF6	FeSnF6	CdPdF6	CdRhF6
CsBrF6	LiAuF6	CaPtF6	ZnSnF6	LiSbF6	NaBiF6
CsSbF6	NiPtF6	ZnPtF6	NiSnF6	BalrF6	TIAsF6
CsBiF6	CdPtF6	CoPtF6	CuSnF6	RbBiF6	
CsUF6	LiPF6	MgRhF6	CdSnF6	KRhF6	
KOsF6	LiAsF6	CaRhF6	CdTiF6	CsReF6	
NaCrF6	PdZrF6	ZnRhF6	LiBiF6	KPF6	

Г

Example: STRUCTURE TYPES COMPSTRU

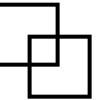
STUDY OF THE FAMILY ABF6

STUDY OF THE FAMILY ABX3

R-3 (148);WP sequence: fc²; Pearson: hR10

	Macon	CoO2	(EaCI)	Manhii	Nicon	Collin	OSTA	MnO2	CdO	Colle	MnO	C+01	EeO?	0.00	CIONA	Curch	Collab	MeO	CdCA	A m L in	NeOa	Crcin	(010)	VO24	HAEON
	mgoo	000,	(I cor		14100	COMI	O3T)	millor	ouo.	Cennig	mino	GeU.	1 604	Cao	CIOIN	CuO	GeMr	mge	CdGe	_					H4F3N
MgO3Ti	0	0,0	0,2	0,3	0,1	0,3	0,3	0,2	0,6	0,2	0,2	0,3	0,1	0,5	0,3	0,2	0,4	0,4	0,6	0,5	0,6	2,4	2,2	1,2	1,7
CoO3Ti	0,0	0	0,2	0,3	0,1	0,3	0,3	0,2	0,6	0,2	0,2	0,3	0,0	0,5	0,3	0,2	0,4	0,3	0,6	0,4	0,6	2,4	2,2	1,1	1,7
(FeSb0.5)MnO3	0,2	0,2	0	0,4	0,3	0,5	0,4	0,2	0,7	0,1	0,1	0,1	0,2	0,3	0,3	0,2	0,2	0,2	0,4	0,3	0,4	2,6	2,4	1,1	1,6
MnNiO3	0,3	0,3	0,4	0	0,2	0,1	0,2	0,3	0,5	0,4	0,4	0,5	0,3	0,7	0,5	0,4	0,6	0,5	0,8	0,6	0,8	2,3	2,2	1,2	1,7
NiO3Ti	0,1	0,1	0,3	0,2	0	0,2	0,3	0,3	0,6	0,3	0,3	0,4	0,2	0,6	0,4	0,3	0,5	0,4	0,7	0,5	0,6	2,3	2,1	1,2	1,7
CoMnO3	0,3	0,3	0,5	0,1	0,2	0	0,3	0,4	0,6	0,4	0,5	0,5	0,4	0,8	0,5	0,4	0,6	0,6	0,8	0,7	0,8	2,3	2,1	1,2	1,8
O3TiZn	0,3	0,3	0,4	0,2	0,3	0,3	0	0,3	0,5	0,3	0,4	0,4	0,3	0,6	0,5	0,4	0,5	0,5	0,7	0,6	0,7	2,4	2,3	1,2	1,6
MnO3Sn	0,2	0,2	0,2	0,3	0,3	0,4	0,3	0	0,6	0,2	0,2	0,3	0,2	0,4	0,3	0,3	0,3	0,3	0,5	0,4	0,5	2,6	2,4	1,2	1,6
CdO3Ti	0,6	0,6	0,7	0,5	0,6	0,6	0,5	0,6	0	0,7	0,7	0,8	0,7	1,0	0,8	0,8	0,9	0,8	1,0	0,9	1,0	4,9	2,5	1,6	1,8
GeMgO3	0,2	0,2	0,1	0,4	0,3	0,4	0,3	0,2	0,7	0	0,2	0,2	0,2	0,4	0,2	0,2	0,2	0,2	0,4	0,3	0,4	2,6	2,4	1,0	1,6
MnO3Ti	0,2	0,2	0,1	0,4	0,3	0,5	0,4	0,2	0,7	0,2	0,0	0,2	0,1	0,3	0,3	0,1	0,2	0,2	0,4	0,3	0,4	2,5	2,3	1,1	1,6
GeO3Zn	0,3	0,3	0,1	0,5	0,4	0,5	0,4	0,3	0,8	0,2	0,2	0	0,3	0,2	0,3	0,3	0,1	0,2	0,3	0,2	0,3	2,7	2,5	1,0	1,6
FeO3Ti	0,1	0,0	0,2	0,3	0,2	0,4	0,3	0,2	0,7	0,2	0,1	0,3	0	0,4	0,3	0,1	0,3	0,3	0,5	0,4	0,5	2,4	2,2	1,1	1,7
CaO3Sn	0,5	0,5	0,3	0,7	0,6	0,8	0,6	0,4	1,0	0,4	0,3	0,2	0,4	0	0,5	0,4	0,1	0,2	0,2	0,2	0,2	2,9	2,7	1,0	1,6
CI3MnNa	0,3	0,3	0,3	0,5	0,4	0,5	0,5	0,3	0,8	0,2	0,3	0,3	0,3	0,5	0	0,3	0,3	0,2	0,5	0,3	0,4	3,1	2,8	1,2	2,0
CuO3V	0,2	0,2	0,2	0,4	0,3	0,4	0,4	0,3	0,8	0,2	0,1	0,3	0,1	0,4	0,3	0	0,3	0,3	0,5	0,4	0,5	2,4	2,2	1,1	1,7
GeMnO3	0,4	0,4	0,2	0,6	0,5	0,6	0,5	0,3	0,9	0,2	0,2	0,1	0,3	0,1	0,3	0,3	0	0,1	0,2	0,1	0,2	5,1	2,6	1,0	1,6
MgO3Si	0,4	0,3	0,2	0,5	0,4	0,6	0,5	0,3	0,8	0,2	0,2	0,2	0,3	0,2	0,2	0,3	0,1	0	0,2	0,1	0,2	5,0	2,5	1,0	1,6
CdGeO3	0,6	0,6	0,4	0,8	0,7	0,8	0,7	0,5	1,0	0,4	0,4	0,3	0,5	0,2	0,5	0,5	0,2	0,2	0	0,2	0,2	5.1	2,7	1,0	1,7
AsLiO3	0,5	0,4	0,3	0,6	0,5	0.7	0,6	0,4	0,9	0,3	0,3	0,2	0.4	0,2	0,3	0,4	0.1	0.1	0.2	0	0,1	2,9	4.8	0,9	1,7
NaO3Sb	0,6	0,6	0,4	0,8	0,6	0,8	0,7	0,5	1,0	0,4	0,4	0,3	0,5	0,2	0,4	0,5	0,2	0,2	0,2	0,1	0	5.2	2.8	1,0	1,7
CrSiTe3	2,4	2,4	2,6	2,3	2,3	2,3	2,4	2,6	4,9	2,6	2,5	2,7	2,4	2,9	3,1	2,4	5,1	5,0	5,1	2,9	5.2	0	0.4	5,4	3,1
(AlCu)PSe3	2,2	2,2	2,4	2,2	2,1	2,1	2,3	2,4	2,5	2,4	2,3	2,5	2,2	2,7	2,8	2,2	2,6	2,5	2,7	4,8	2.8	0.4	0	3,1	3,1
KO3Sb	1,2	1,1	1,1	1,2	1,2	1,2	1,2	1,2	1,6	1,0	1,1	1,0	1,1	1,0	1,2	1,1	1,0	1,0	1,0	0,9	1,0	5.4	3,1	0	1,4
H4F3NSn	1,7	1,7	1,6	1.7	1,7	1,8	1,6	1,6	1,8	1,6	1,6	1,6	1,7	1,6	2,0	1,7	1,6	1,6	1.7	1.7	1.7	3,1	3,1	1,4	0
THI OHOI	2,1	2,7	2,0	2,1	2,7	1,0	2,0	1,0	2,0	1,0	1,0	1,0	2,1	1,0	2,0	1,1	2,0	1,0	2,7	1,1	2,1	0,1	U,I	1,4	-

ICSD (c/a)



FeTiO₃

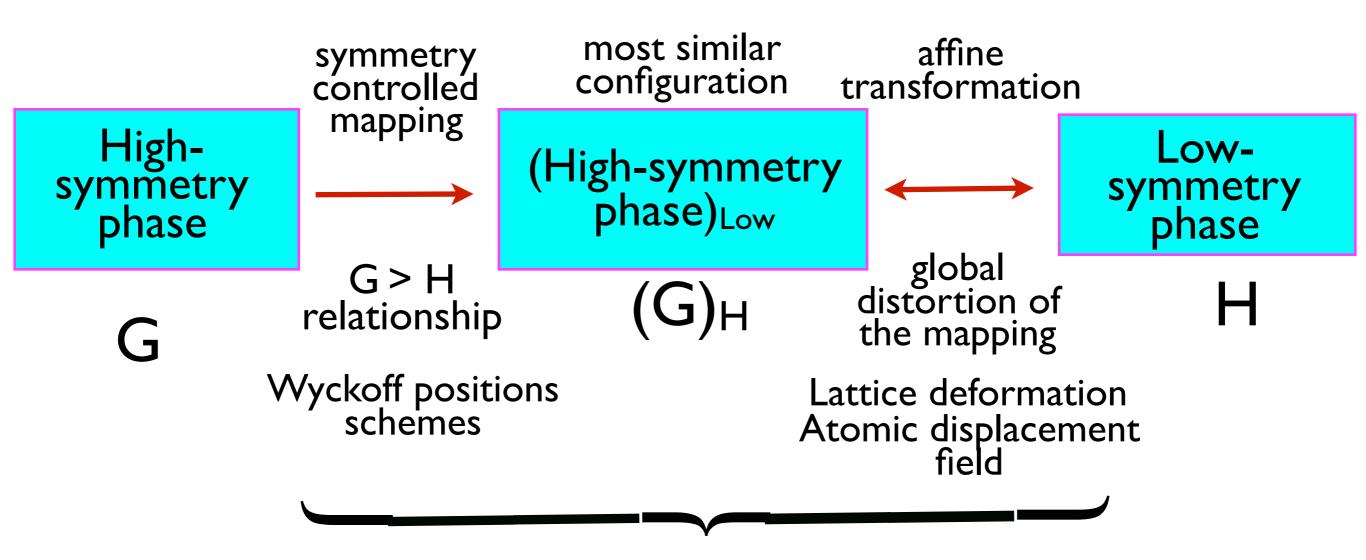
FePSe₃

Bergerhoff (structure descriptor)

Bilbao Server (global distortion)

- 0.3 FeTiO₃ (NaSbO₃)
- 0.4 FePSe₃

Crystal-structure relationships


STRUCTURAL PHASE TRANSITIONS

Structure Relationships

PROBLEM:

Consider two phases of the same compound (specified by their unit-cell parameters and atomic coordinates) with group-subgroup related symmetry groups G>H

Search for a mapping of the two structures such that the global distortion accompanying the mapping is tolerably small.

STRUCTURE RELATIONS

Given the high- and low-symmetry phases:

- I. Characterize the symmetry reduction between the high- and low-symmetry phases
 - -index of the group-subgroup pair: INDEX
 - -group-subgroup graph, (P,p): SUBGROUPGRAPH
- 2. Domain-structure analysis
- 3. Determine the so-called *reference* structure, *i.e.* high-symmetry structure in the low-symmetry basis
 - -lattice parameters: CELLTRANS
 - -atomic coordinates: TRANSTRU or WYCKSPLIT
- 4. Evaluate the lattice strain and the atomic displacements accompanying the phase transitions: STRAIN, COMPSTRU

Cristobalite phase transitions

At low temperatures, the space-group symmetry of cristobalite is given by the space group is $P4_12_12$ (92) with lattice parameters $a=4.9586\text{\AA}$, $c=6.9074\text{\AA}$. The four silicon atoms are located in Wyckoff position 4(a) ..2 with the coordinates x, x, 0; -x, -x, 1/2; 1/2-x, 1/2+x, 1/4; 1/2+x, 1/2-x, 3/4, x = 0.3028.

During the phase transition, the tetragonal structure is transformed into a cubic one with space group Fd-3m (227), a=7.147Å. It is listed in the space-group tables with two different origins. If 'Origin choice 2' setting is used (with point symmetry -3m at the origin), then the silicon atoms occupy the position 8(a) -43m with the coordinates 1/8, 1/8, 7/8, 3/8, 3/8 and those related by the face-centring translations.

Describe the structural distortion from the cubic to the tetragonal phase by the determination of (i) the displacements if the Si atoms in relative and absolute units, and (ii) the changes on the lattice parameters during the transition.

Example: α -Cristobalite $\rightarrow \beta$ -Cristobalite

2 entries selected.

CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type:

Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol.

Chek the	, Alta, rears	on or wyckon	Jymbor to i	ma stractar	CS With	indi symbo	•						
CC=44094	Det	Bonds	Pattern	Structure	Jmol	CC=44095		Details	Bonds	Patter	rn Stru	cture	Jmol
Title	First-principl	les study of crys	talline silica.			Title	First-pr	First-principles study of crystalline silica.					
Authors	rs Feng Liu; Garofalini, H.; King-Smith, D.; Vanderbilt, D.				Authors	Feng Li	Feng Liu; Garofalini, H.; King-Smith, D.; Vanderbilt, D.						
Reference	Physical Review, Serie 3. B - Condensed Matter (1994) 49, 12528-12534 Link XRef SCOPUS SCIRUS Google Also: Phase Transition (1992) 38, 127-220					Reference	12528 Link X	-12534 Ref SCO	Serie 3. B PUS SCIR nsition (19	US Goog	le	(199	94) 49 ,
Compound	_	istobalite alpha a] [TeO2(alph	-	le - HT [AX2]]	Compoun	Si 02 - [h a]	_	balite beta	3] Silicon	oxide - HT	[AX	2] [cF24]
Cell	4.9586, 4.9586, 6.9074, 90., 90., 90. P41212 (92) V=169.84					Cell	7.147, 7.147, 7.147, 90., 90., 90. FD3-MS (227) V=365.07						
Remarks	: THE TYP = At least one No R value o	balite alpha: PC TeO2(alpha): X temperature fa given in the pape up to 500 K (2nd	DS ctor missing ir er.	the paper.		Remarks	THE XD At least The coo distance	OS t one tem ordinates es do not	-	actor miss given in th n those ca	ing in the	pape ut the	r.
									probably co in the par				
Atom (site)	Oxid.	x, y, z, B	, Occupancy				Metasta	able above			omaszews	ki), s	table above
Si1 (4	a) 4	0.3028	0.3028	0	0 1		1743 K	(
01 (8	3b) -2	0.2383	0.1093	0.1816	0 1	About fait) O		= 5	0			
						Atom (site	e) Oxid.		x, y, z, B	, Occupa	ncy		
						Si1 (8	a)	4	0	0	0	0 :	1
						01 (9	6h)	-2	0.125	0.081	0.169	0 (0.1667

Origin choice 2: Si 8a 1/8,1/8,1/8 7/8,3/8,3/8

SOLUTION

- I. Characterize the symmetry break between the high- and low-symmetry phases
 - -index of the group-subgroup pair: INDEX
 - -transformation matrix: SUBGROUPGRAPH
- 2. Calculate the lattice parameters of the low-symmetry phase: CELLTRANS
- 3. Calculate the atomic coordinates of the low-symmetry phase: TRANSFORM (or WYCKSPLIT)
- 4. Evaluate the lattice strain and the atomic displacements accompanying the phase transitions: STRAIN, COMPSTRU

Step 1. Determination of the index of the group-subgroup pair

INDEX: Index of a group-subgroup pair

Please, enter the sequential number of group as given in *International Tables for Crystallography*, Vol. A:

Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A:

space-group identification

choose 227

Option A: Introduce the formula units (conventional) of the high and low symmetry structure.

The formula units (conventional) on the high symmetry structure:

The formula units (conventional) on the low symmetry structure:

formula units

• Option B: Introduce the lattice parameters of the high and low symmetry structure.

The lattice parameters on the high symmetry structure:

The lattice parameters on the low symmetry structure:

7.12637 7.12637 7.12637 90. 90. 90.

4.9501 4.9501 6.8760 90. 90. 90.

Index of a group-subgroup pair

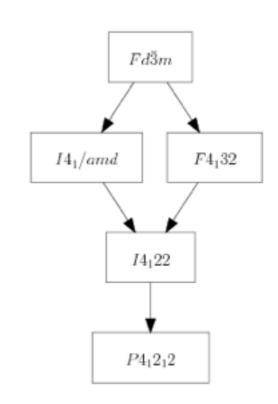
High symmetry Space Group: 227 (Fd-3m) [origin choice 2]

Low symmetry Space Group: 92 (P4₁2₁2)

iL 2 ip 6 Total index 12

The corresponding subgroup data can be found here.

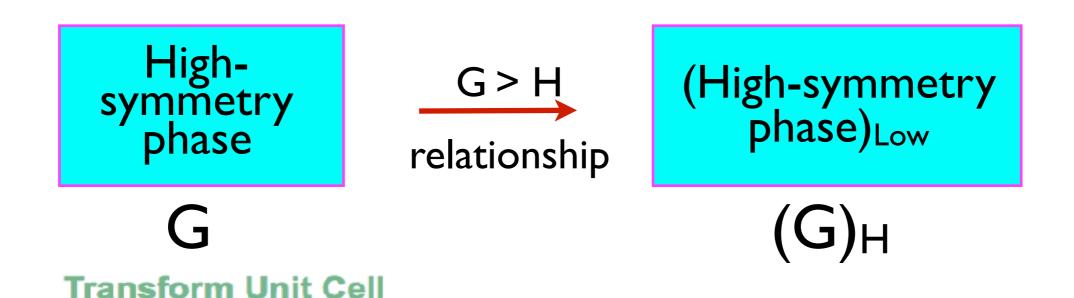
lattice parameters

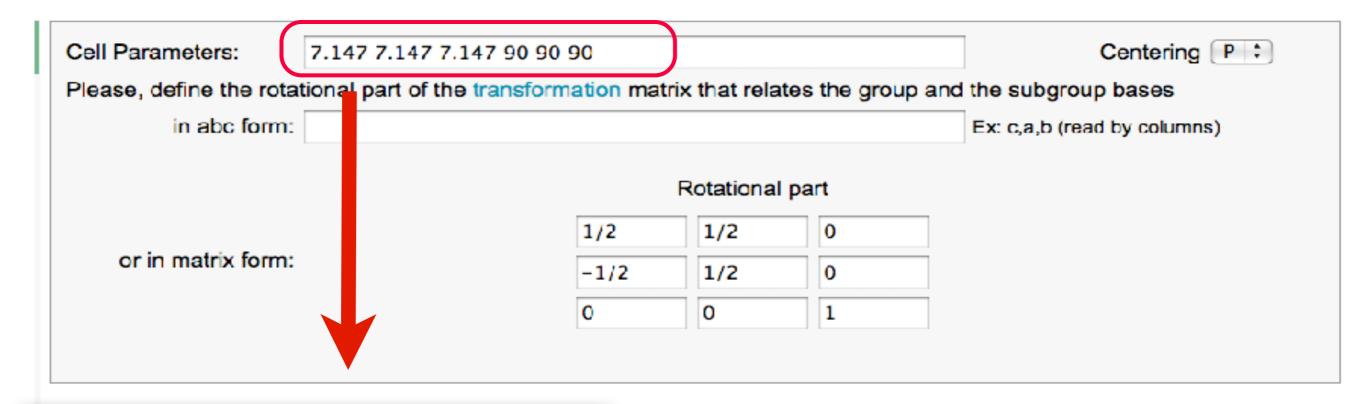

Step 2. Study of the group-subgroup symmetry break

SUBGROUPGRAPH

Group-Subgroup Graph

Class 1

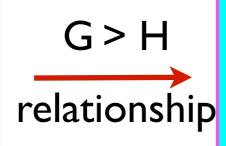

Che	c	k	Chain [indices]	Chain with HM symbols		Tra	nsformation	Identical
0		1	227 210 098 092 [2 3 2]	Fd-3m > F4 ₁ 32 > I4 ₁ 22 > P4 ₁ 2 ₁ 2	(-1/2 0 1/2	1/2 0 3/8 0 1 3/8 1/2 0 5/8	to group 1
0	2	2	227 141 098 092 [3 2 2]	Fd-3m > I4 ₁ /amd > I4 ₁ 22 > P4 ₁ 2 ₁ 2	(1/2 -1/2 0	1/2 0 5/8 1/2 0 3/8 0 1 3/8	(to group 2)
0		3	227 141 098 092 [3 2 2]	Fd-3m > I4 ₁ /amd > I4 ₁ 22 > P4 ₁ 2 ₁ 2	(0 1/2 -1/2	0 1 3/8 1/2 0 5/8 1/2 0 3/8	(to group 3)



Show graph

Which of the three matrices corresponds to the cristobalite case?

Step 3. Lattice parameters of the reference structure CELLTRANS



Show)

Step 3. Atomic coordinates of the reference structure

(High-symmetry phase)_{Low}

TRANSTRU

Transform Structure

 $(G)_H$

	227 7.147 7.14	47 7.147	90 90 90			
Structure	Si 1	8a	0.	125000	0.125000	0.125000
Low symmetry Space Group	92					
Transformation Matrix:						
					,	
			Rotational	part	,	Origin Shift
	(Pp)	1/2	Rotational	part 0		Origin Shift 5/8
In matrix form:	(P,p)	1/2 -1/2				

 Space Group: 92

 Lattice Parameters: 5.053692 5.053692 7.147000 90 90 90

 AT # WP Coordinates

 Si 1 4a 3/4 1/4 3/4

atomic coordinates of the reference structure

Step 4. Characterization of the global distortion

Symmetry break: Fd-3m \rightarrow P4₁2₁2, index 12 a_t =1/2(a_c - b_c), b_t =1/2(a_c + b_c), c_t = c_c origin shift: (5/8,3/8,3/8)

(P,p)

Experiment:

Cubic phase:

a=7.147 Å
Si 8a 1/8 1/8 1/8
7/8 3/8 3/8

Calculated:

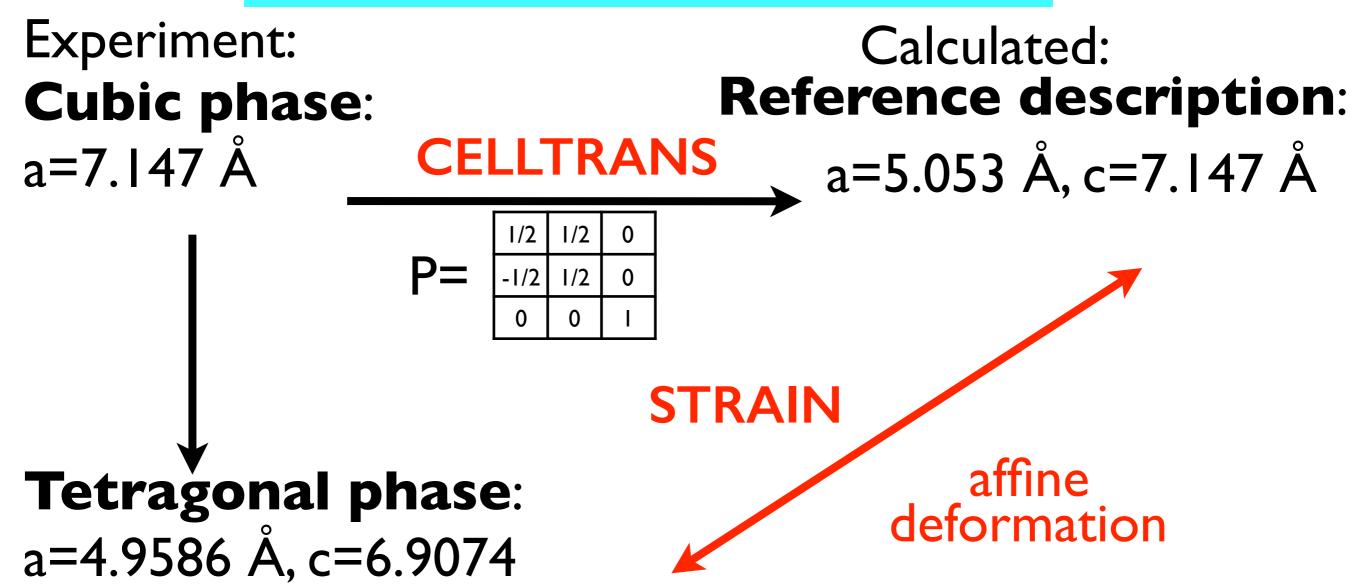
Reference description:

a=5.053 Å, c=7.147 Å Si 4a 0.75 0.25 0.75

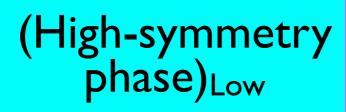
0.25 0.25 0

Tetragonal phase:

a=4.9586 Å, c=6.9074


Si 4a 0.3028 0.3028 0

affine deformation?


atomic displacements?

Step 4a. Determination of the affine deformation

Symmetry break: Fd-3m \rightarrow P4₁2₁2, index 12 a_t =1/2(a_c - b_c), b_t =1/2(a_c + b_c), c_t = c_c origin shift: (5/8,3/8,3/8)

Step 4a. Determination of the affine deformation

Low-symmetry phase

 $(G)_H$

H

Unit cell 1:

Unit cell 2:

[a1] [b1] [c1] [α1] [β1] [γ1] 5.053 5.053 7.147 90 90 90 [a2] [b2] [c2] [α2] [β2] [γ2] 4.9586 4.9586 6.9074 90 90 90

STRAIN

Finite Lagrangian Strain Tensor (finite deformation)

Eigenvalues

-0.01851 -0.01851 -0.03296

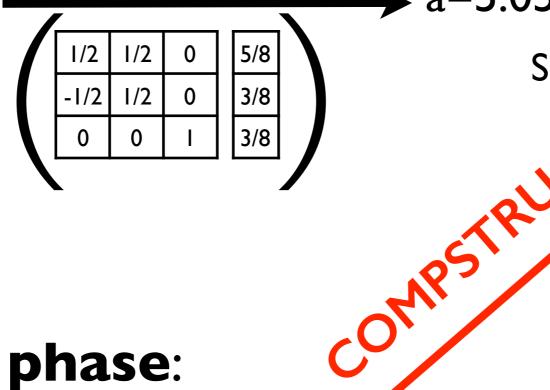
Degree of lattice distortion

0.01403

 $S=1/3(\sum \eta_i^2)^{1/2}$

Step 4b. Atomic displacement field

Symmetry break: Fd-3m→P4₁2₁2, index 12


Experiment:

Cubic phase:

a=7.147 Å

Si 8a 1/8 1/8 1/8 7/8 3/8 3/8

TRANSTRU

Calculated:

Reference description:

Si 4a 0.75 0.25 0.75 0.25 0

Tetragonal phase:

a=4.9586 Å, c=6.9074

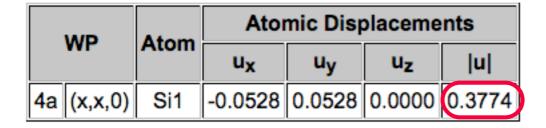
Si 4a 0.3028 0.3028 0

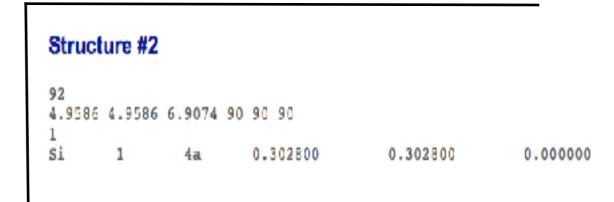
atomic displacement field

Step 4b. Atomic displacement field

COMPSTRU

Reference structure


Structure #1 92 5.053692 5.053692 7.147000 90.000000 90.000000 90.000000 1 8i 1 4a 0.750000 0.250000 0.750000


S	d _{max.} (Å)	d _{av.} (Å)	Δ
0.0149	0.3774	0.7548	0.122

$$\begin{array}{ll} \text{structural} \\ \text{descriptor} \end{array} \Delta = 0.122$$

Atom pairings and distances

Experimental data

Most similar configuration

```
092
4.958600 4.958600 6.907400 90.000000 90.000000 90.000000
1
Si 1 4a 0.697200 0.302800 0.750000
```

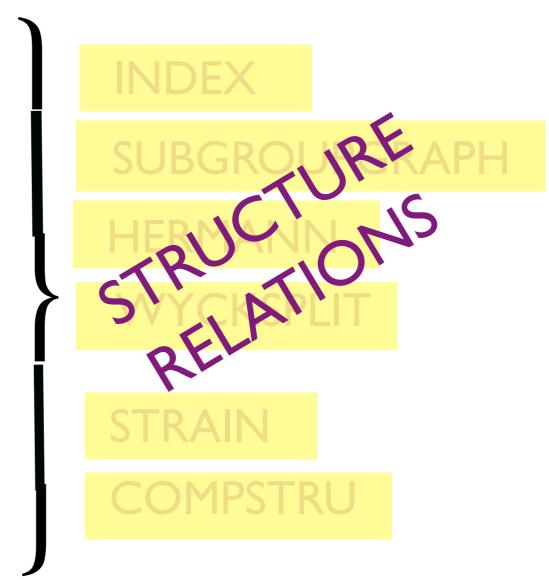
maximal displacement

PROBLEM:

Structural Relationship between two structures with group-subgroup related symmetry groups G→H

High-symmetry phase: G

symmetry reduction


Group-subgroup relation G>H Wyckoff positions splittings

Reference description: (G)H

transformation atomic

affine lattice deformation displacement field

Low-symmetry phase: H

SOLUTION

highsymmetry structure

Cristobalite phase transition

symmetry structure

tolerances

STRUCTURE RELATIONS

High sym	metry structure	
	formula units in the high symmetry structure ank for auto-detection via the volume information)	
Structure Data [CIF format]		Examinar
BCS Format	227 7.147 7.147 7.147 90 90 90 1 Si 1 8a 0.125 0.125 0.125	
Low symr	metry structure:	
	formula units in the low symmetry structure ank for auto-detection via the volume information)	
Structure Data [CIF format]		Examinar
BCS Format	92 4.9586 4.9586 6.9074 90 90 90 1 Si 1 4a 0.3028 0.3028 0	

Enter the allowed tolerance (a b c α β γ): .2 .2 .3 2 2

Enter the maximum distance allowed between the paired atoms: 1.5

SOLUTION

Cristobalite phase transition

Fd-3m High-symmetry phase

$$(\mathbf{P},\mathbf{p}) = \begin{pmatrix} 1/2 & 1/2 & 0 & 5/8 \\ -1/2 & 1/2 & 0 & 3/8 \\ 0 & 0 & 1 & 3/8 \end{pmatrix}$$

Symmetry-controlled mapping

(High-symmetry phase)P41212

Global distortion

Lattice deformation Atomic displacement field

High Symmetry Structure

```
227
7.147 7.147 7.147 90 90 90
1
Si 1 8a 0.125000 0.125000 0.125000
```

Description of the High Symmetry Structure in the most similar configuration to the Low Symmetry Structure

```
092
5.053692 5.053692 7.147000 90.000000 90.000000 90.000000
1
Si 1 4a 0.250000 0.250000 0.000000
```

Low Symmetry Structure

```
92
4.9586 4.9586 6.9074 90 90 90
1
Si 1 4a 0.302800 0.302800 0.000000
```

Atomic Displacements

0.0528 -0.0528 0.0000 0.3774

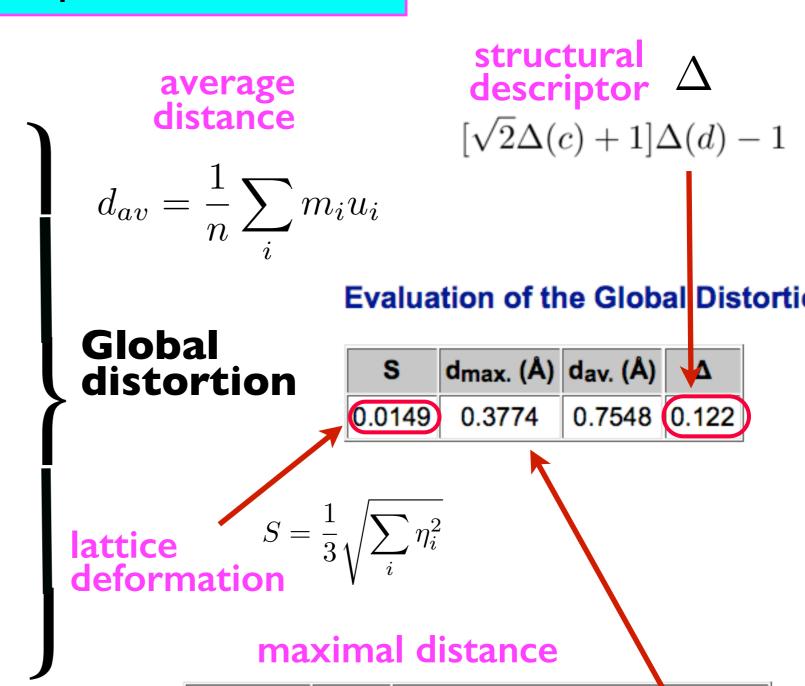
uz

uy

|u|

Cristobalite phase transition

Fd-3m High-symmetry phase


$$(\mathbf{P},\mathbf{p}) = \begin{pmatrix} 1/2 & 1/2 & 0 & 5/8 \\ -1/2 & 1/2 & 0 & 3/8 \\ 0 & 0 & 1 & 3/8 \end{pmatrix}$$

alternative transformation matrices

$$(P,p)_1 = \begin{pmatrix} 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 5/8 \\ -1/2 & 1/2 & 0 & 3/8 \end{pmatrix}$$

$$(P,p)_2 = \begin{pmatrix} -1/2 & 1/2 & 0 & 3/8 \\ 0 & 0 & 1 & 3/8 \\ 1/2 & 1/2 & 0 & 5/8 \end{pmatrix}$$

P4₁2₁2 low-symmetry phase

WP

4a (x,x,0)

Atom

Si1

ux

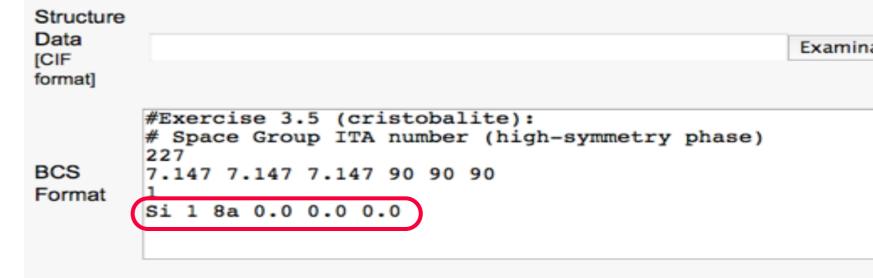
High symmetry structure

STRUCTURE RELATIONS

SOLUTION

highsymmetry structure

Origin choice 1


Cristobalite phase transition

> lowsymmetry structure

> > tolerances

NON-STANDARD settings

Enter the formula units in the high symmetry structure (Leave blank for auto-detection via the volume information)

Low symmetry structure:

Structure

Data

Enter the formula units in the low symmetry structure (Leave blank for auto-detection via the volume information)

```
Examin
[CIF
format]
        # Space Group ITA number (low-symmetry phase)
         4.9586 4.9586 6.9074 90 90 90
BCS
Format
         Si 1 4a 0.3028 0.3028 0
```

Enter the allowed tolerance (a b c α β γ): .2 .2 .3 2 2

Enter the maximum distance allowed between the paired atoms: 1.5

NON-standard settings

One or both of the structures are given in a non-standard setting?

No

SOLUTION

STRUCTURE RELATIONS

NON-STANDARD settings

highsymmetry structure

Origin choice 1

Please choose the setting in which the high symetry structure is given:

Please choose the setting in which the low symetry structure is given: (You can choose one of the ITA settings or define your own setting introducing a label and the transformation matrix to the standard setting)

lowsymmetry structure
 Setting
 P
 p-1

 P 41 21 2
 a,b,c
 a,b,c

Potational part

User defined setting:

Label

Cristobalite phase transition

Transformation Matrix

	Rotation	ai part	Oligin shirt
1	0	0	0
0	1	0	0
0	0	1	0

Origin chift

Problem 3.6(a)

Lead phosphate phase transition

Lead phosphate $Pb_3(PO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No. 166) to a ferroelastic phase of symmetry C2/c (No.15).

Using the structure data given in the ExerciseData file and the tools of the Bilbao Crystallographic Server:

- (i)characterize the symmetry reduction between the high- and low-symmetry phases (index, graph of maximal subgroups, etc.);
- (ii)describe the structural distortion from the rhombohedral to the monoclinic phase by the evaluation of the lattice strain and the atomic displacements accompanying the phase transition.

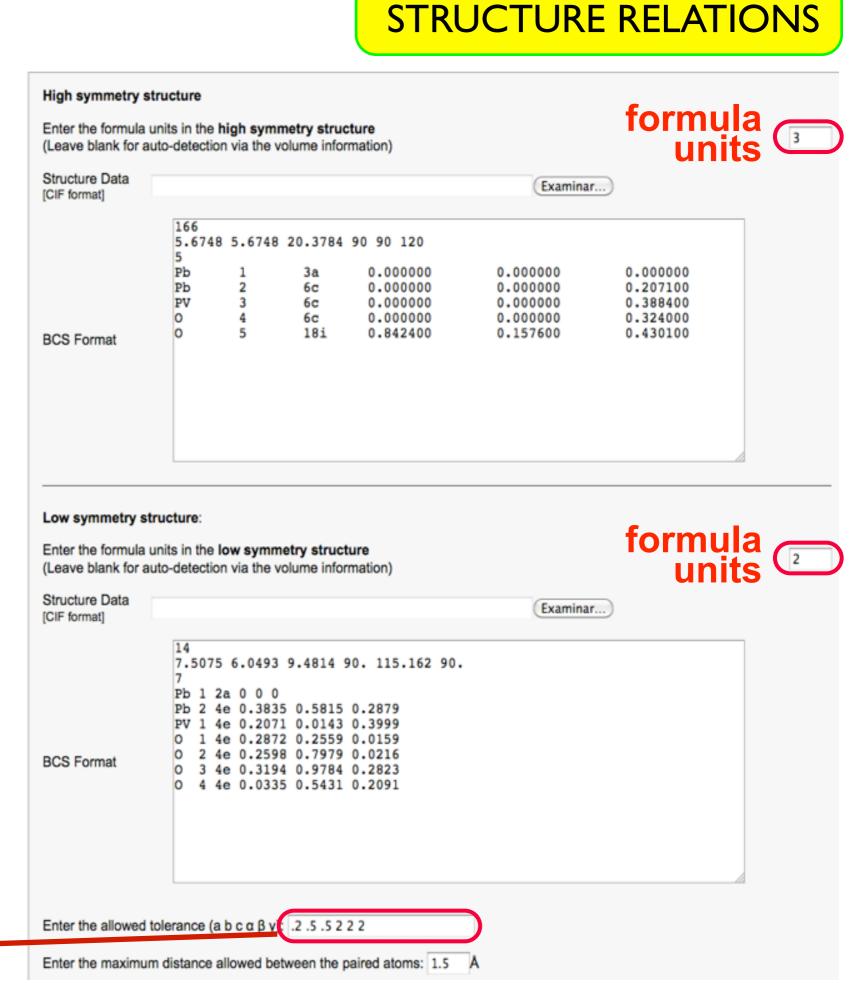
Problem 3.6 (b)

Lead vanadate phase transition

Lead phosphate $Pb_3(VO_4)_2$ shows a phase transition from a paraelastic high-temperature phase with symmetry R-3m (No. 166) to a ferroelastic phase of symmetry $P2_1/c$ (No.14).

Using the structure data given in the ExerciseData file and the tools of the Bilbao Crystallographic Server:

- (i)characterize the symmetry reduction between the high- and low-symmetry phases (index, graph of maximal subgroups, etc.);
- (ii)describe the structural distortion from the rhombohedral to the monoclinic phase by the evaluation of the lattice strain and the atomic displacements accompanying the phase transition.


Problem 3.6(b)

SOLUTION

highsymmetry structure

Pb₃(VO₄)₂ ferroelastic phase transition

symmetry structure

higher tolerances ←

SOLUTION

Ferroelastic phase transition Pb₃(VO₄)₂

R-3m High-symmetry phase

$$(P,p) = \begin{pmatrix} -1/3 & -1 & 1 & 0 \\ 1/3 & -1 & -1 & 0 \\ 1/3 & 0 & 0 & 0 \end{pmatrix}$$

Atom pairings and distances

	Atom Mappings									
	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S ₂					
2a	(0,0,0)	Pb1	(0.000000,0.000000,0.000000)	Pb1	(0.000000,0.000000,0.000000)					
4e	(x,y,z)	Pb2	(0.378700,0.500000,0.292900)	Pb2	(0.383500,0.581500,0.287900)					
4e	(x,y,z)	PV3	(0.165200,0.000000,0.388400)	PV1	(0.207100,0.014300,0.399900)					
4e	(x,y,z)	O53	(0.290300,0.263600,0.008900)	01	(0.287200,0.255900,0.015900)					
4e	(x,y,z)	O52	(0.290300,0.736400,0.008900)	02	(0.259800,0.797900,0.021600)					
4e	(x,y,z)	O5	(0.290300,0.000000,0.272500)	О3	(0.319400,0.978400,0.282300)					
4e	(x,y,z)	04	(0.028000,0.500000,0.176000)	04	(0.033500,0.543100,0.209100)					

Atom

04

WP

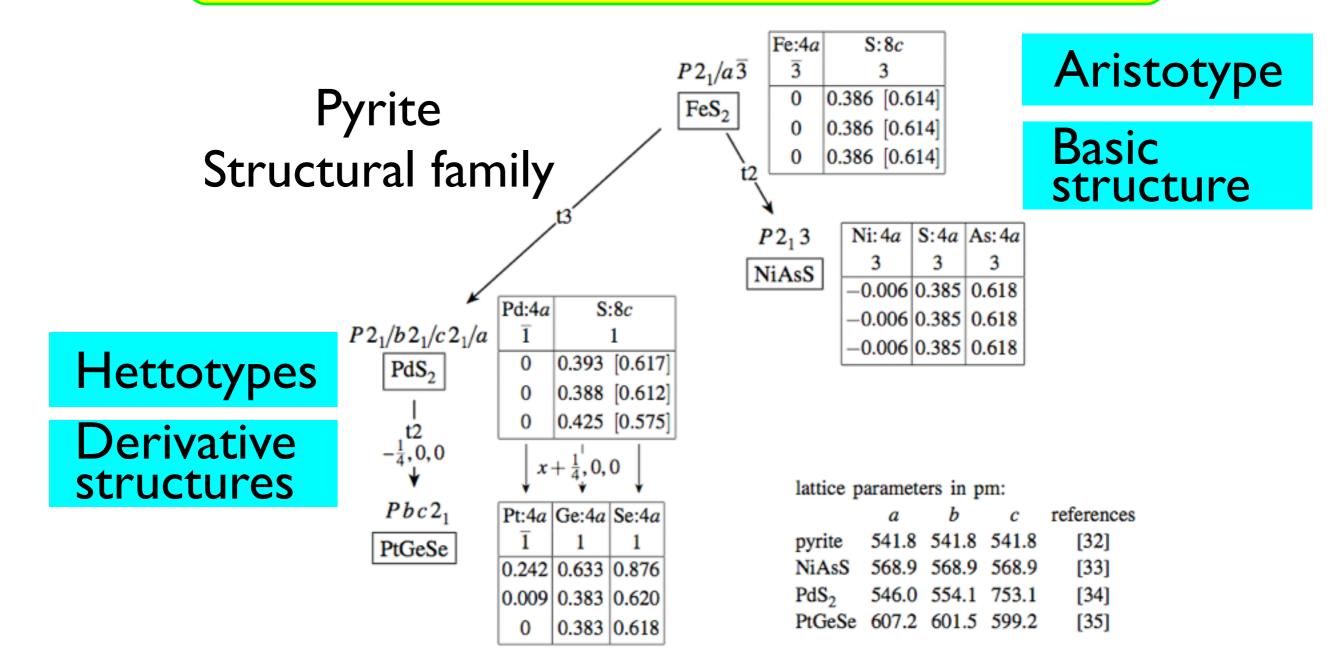
4e (x,y,z)

|u| uy Uх uz 0.0000 0.0000 2a (0,0,0) 0.0000 0.0000 -0.0048 -0.0815 0.0050 0.4981 Pb2 4e (x,y,z) -0.0419 -0.0143 -0.0145 0.2986 4e (x,y,z) 0.0031 9.0077 -0.0070 0.0918 O53 4e (x,y,z) 4e (x,y,z) 052 0.0305 -0.0615 -0.0127 0.4783 40 (x,y,z) -0.0291 | 0.0216 | -0.0098 | 0.2370

Atomic Displacements

-0.0055 |-0.0431 |-0.0331 |0.3964

P2_I/c low-symmetry phase


Evaluation of the Global Distortion

S	d _{max.} (Å)	day (A)	Δ
0.0236	0.4981	0.2536	0.105

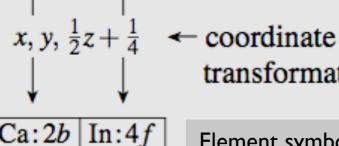
Crystal-structure relationships

SYMMETRY RELATIONS BETWEEN CRYSTAL STRUCTURES

Problem: Symmetry Relations between Crystal Structures Baernighausen Trees

Module design of crystal symmetry relations

Scheme of the general formulation of the smallest step of symmetry reduction connecting two related crystal structures

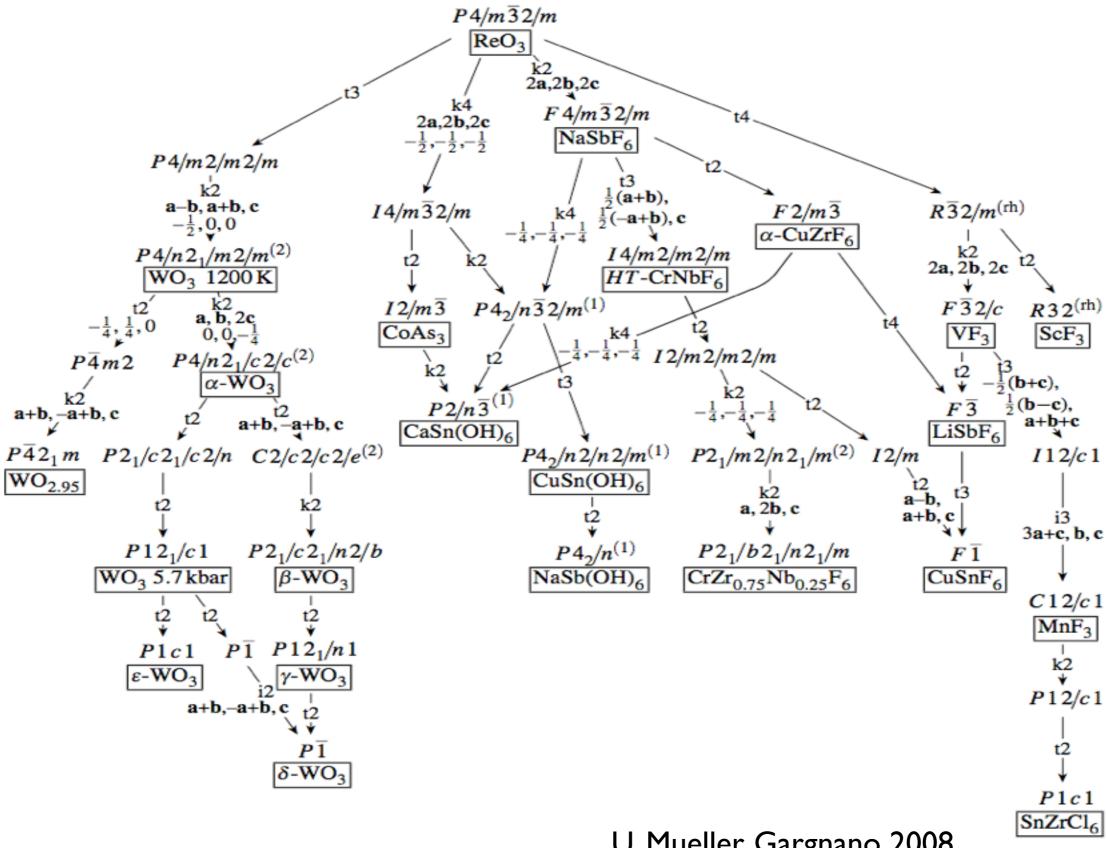

Hermann–Mauguin symbol of the higher symmetric space group $\mathcal{G} \rightarrow P6/m2/m2/m$ Symbol designating the higher → AlB_2 symmetric crystal structure, e.g. the chemical formula or mineral name Type and index of the subgroup $\mathcal{H} \rightarrow$ Basis transformation* → a, b, 2c Origin shift* \rightarrow 0, 0, $-\frac{1}{2}$ Hermann-Mauguin symbol of the

maximal subgroup $\mathcal{H} \rightarrow P 6_3/m 2/m 2/c$ Symbol designating the lower → CaIn₂

symmetric crystal structure

Al:1a 6/mmm	$\frac{B:2d}{6m2}$
0	1/3
0	$\frac{\overline{3}}{2}$
0	$\frac{1}{2}$

Element symbol Wyckoff posit. sité symmetry coordinates

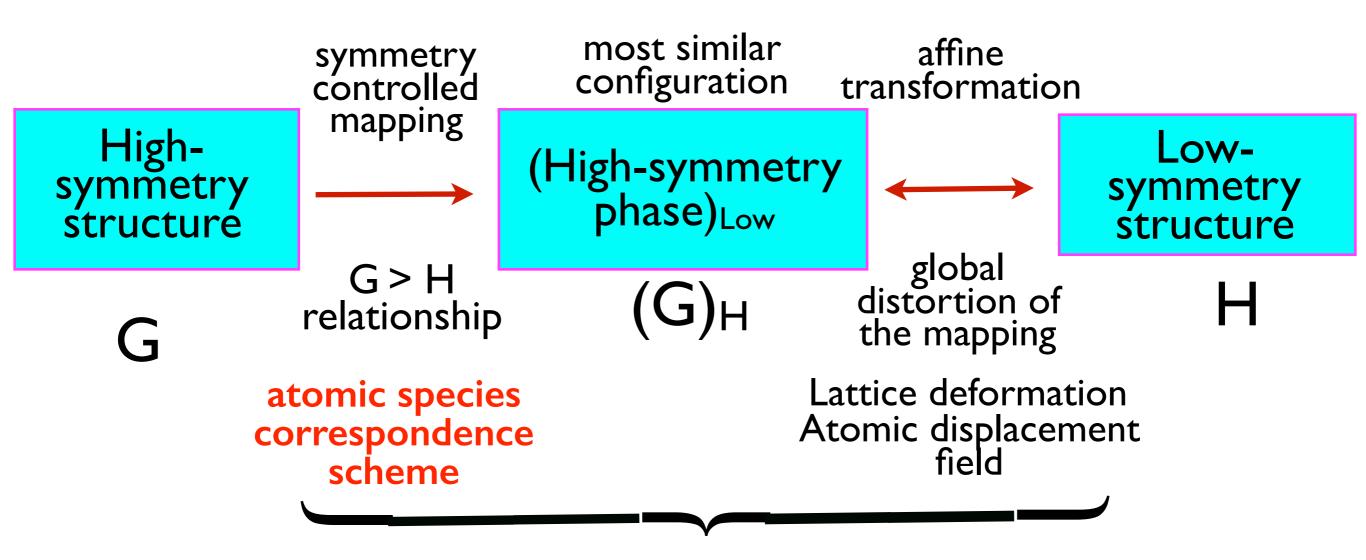

Ca:2b In:4f 6m23m0 0 0.455

transformations

Element symbol Wyckoff posit. sité symmetry coordinates

mentioned only if there is a change

Family tree of hettotypes of ReO₃



Structure Relationships

PROBLEM:

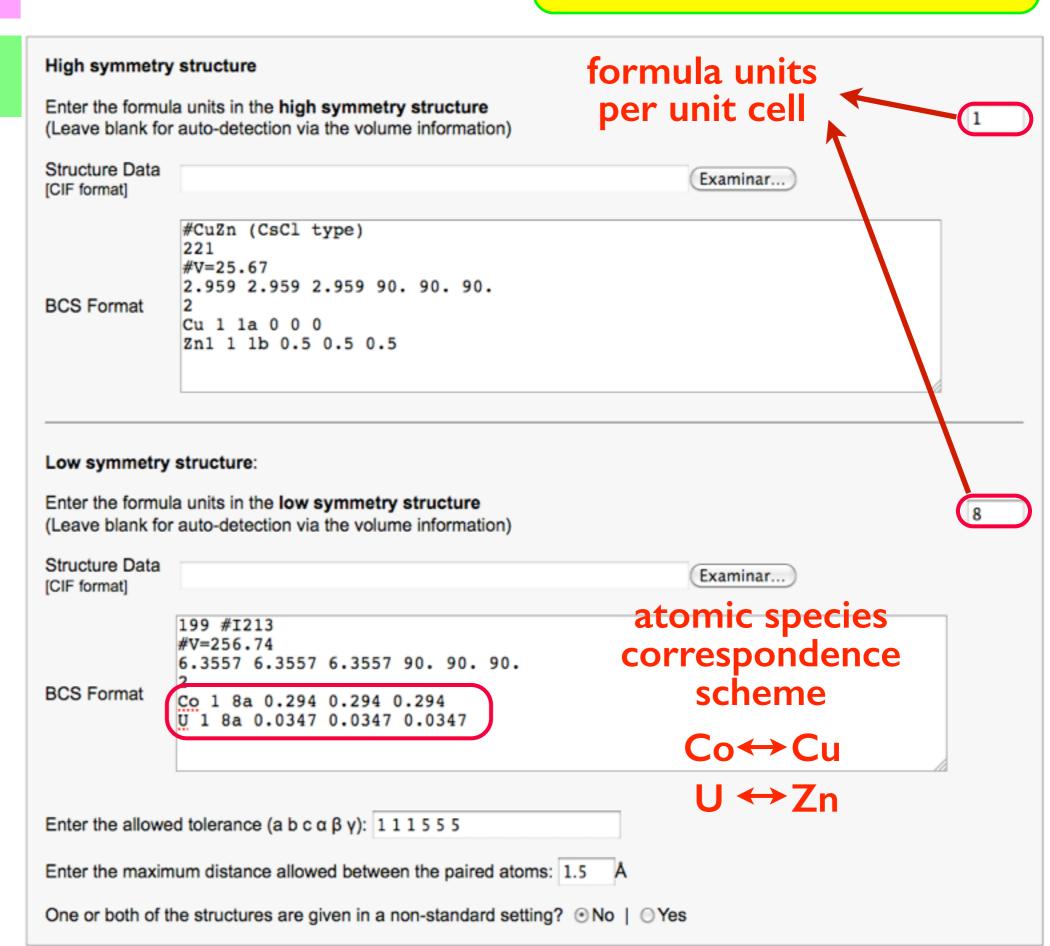
Consider two structures (specified by their unit-cell parameters and atomic coordinates) with group-subgroup related symmetry groups G>H

Search for a mapping of the two structures such that the global distortion accompanying the mapping is tolerably small.

STRUCTURE RELATIONS

Problem: Symmetry relations between crystal structures

Hettotype of CsCl structure


Show that the crystal structure of CoU maybe interpreted as a slightly distorted CsCl (or β -brass, CuZn)-type structure. Using the structural data in the *Exercise Data* file, characterize the structural relationship between the CoU structure and CsCl structure.

SOLUTION

highsymmetry structure

symmetry structure

tolerances

Problem: Symmetry relations between crystal structures

HT-quartz and LT-quartz

- (i) Upon heating above 573 °C the *LT*-quartz transforms to its *HT* form. Set up the corresponding Baernighausen tree that describes the symmetry relations between the two quartz forms. Which additional degree of freedom are present in the lower symmetry form? (The crystal structures of *HT*-quartz and *LT*-quartz can be found in the *ExerciseData* file.)
- (ii) Consider the structure data of AIPO₄ listed in the *ExerciseData* file. Describe its structural relationship to quartz and construct the corresponding Baernighausen tree.

Hint: In order to find the structural relationship between quartz and AIPO₄ consider the splitting of Si positions into two: one for Al and one for P.